
Project Number 732223

D2.7 Framework and API Analysis - Final Report

Version 1.3
29 June 2019

Final

Public Distribution

Centrum Wiskunde & Informatica (CWI)

Project Partners: Athens University of Economics & Business, Bitergia, Castalia Solutions,
Centrum Wiskunde & Informatica, Eclipse Foundation Europe, Edge Hill
University, FrontEndART, OW2, SOFTEAM, The Open Group, University of
L′Aquila, University of York, Unparallel Innovation

Every effort has been made to ensure that all statements and information contained herein are accurate, however the
CROSSMINER Project Partners accept no liability for any error or omission in the same.

© 2019 Copyright in this document remains vested in the CROSSMINER Project Partners.

D2.7 Framework and API Analysis - Final Report

Project Partner Contact Information

Athens University of Economics & Business Bitergia
Diomidis Spinellis José Manrique Lopez de la Fuente
Patision 76 Calle Navarra 5, 4D
104-34 Athens 28921 Alcorcón Madrid
Greece Spain
Tel: +30 210 820 3621 Tel: +34 6 999 279 58
E-mail: dds@aueb.gr E-mail: jsmanrique@bitergia.com
Castalia Solutions Centrum Wiskunde & Informatica
Boris Baldassari Jurgen J. Vinju
10 Rue de Penthièvre Science Park 123
75008 Paris 1098 XG Amsterdam
France Netherlands
Tel: +33 6 48 03 82 89 Tel: +31 20 592 4102
E-mail: boris.baldassari@castalia.solutions E-mail: jurgen.vinju@cwi.nl
Eclipse Foundation Europe Edge Hill University
Philippe Krief Yannis Korkontzelos
Annastrasse 46 St Helens Road
64673 Zwingenberg Ormskirk L39 4QP
Germany United Kingdom
Tel: +33 62 101 0681 Tel: +44 1695 654393
E-mail: philippe.krief@eclipse.org E-mail: yannis.korkontzelos@edgehill.ac.uk
FrontEndART OW2 Consortium
Rudolf Ferenc Cedric Thomas
Zászló u. 3 I./5 114 Boulevard Haussmann
H-6722 Szeged 75008 Paris
Hungary France
Tel: +36 62 319 372 Tel: +33 6 45 81 62 02
E-mail: ferenc@frontendart.com E-mail: cedric.thomas@ow2.org
SOFTEAM The Open Group
Alessandra Bagnato Scott Hansen
21 Avenue Victor Hugo Rond Point Schuman 6, 5th Floor
75016 Paris 1040 Brussels
France Belgium
Tel: +33 1 30 12 16 60 Tel: +32 2 675 1136
E-mail: alessandra.bagnato@softeam.fr E-mail: s.hansen@opengroup.org
University of L′Aquila University of York
Davide Di Ruscio Dimitris Kolovos
Piazza Vincenzo Rivera 1 Deramore Lane
67100 L′Aquila York YO10 5GH
Italy United Kingdom
Tel: +39 0862 433735 Tel: +44 1904 325167
E-mail: davide.diruscio@univaq.it E-mail: dimitris.kolovos@york.ac.uk
Unparallel Innovation
Bruno Almeida
Rua das Lendas Algarvias, Lote 123
8500-794 Portimão
Portugal
Tel: +351 282 485052
E-mail: bruno.almeida@unparallel.pt

Page ii Version 1.3
Confidentiality: Public Distribution

29 June 2019

D2.7 Framework and API Analysis - Final Report

Document Control
Version Status Date

0.1 Initial outline 16 October 2018
0.2 API migration part 4 December 2018
0.3 First internal release 14 December 2018
1.0 Final release initial report 28 December 2018
1.1 Full update on MARACAS 29 May 2019
1.2 Release for internal review 24 June 2019
1.3 Final version 29 June 2019

29 June 2019 Version 1.3
Confidentiality: Public Distribution

Page iii

D2.7 Framework and API Analysis - Final Report

Table of Contents

I API Function Calls and Usage Patterns Recommendation 1

1 Introduction 1

2 Background 2

3 Proposed Approach 4

4 Evaluation 9

5 Results 12

6 Threats to Validity 16

7 Related Work 17

8 Conclusion 18

II API Evolution and Migration 20

9 Introduction 20

10 State of the Art 20

11 MARACAS: A Framework for API Analysis and Migration 36

12 Case Studies 50

13 Conclusion 58

III Satisfaction of CROSSMINER Requirements 59

Page iv Version 1.3
Confidentiality: Public Distribution

29 June 2019

D2.7 Framework and API Analysis - Final Report

Executive Summary

This document reports on the final results obtained for Task 2.3 and Task 2.4:

Task 2.3: Dependency Analysis This task will enable the inclusion of domain-specific knowledge about the
API and its semantics of often used software frameworks, in particular at least for OSGi and the Eclipse
plugin model. Since these frameworks are typically implemented using Java Reflection, static analysis
will lead to inaccurate and therefore unusable results. The task is to improve the accuracy of facts
extracted from client code written against these frameworks to a level where we can actually produce
actionable results;

Task 2.4: API Analysis This task will produce analyses to identify API and API usage information. The goal
is to learn from existing projects about typical usage to be able to concretely advise software engineers
about the use of open-source software components. The resulting analyses should be amenable to bespoke
extensions.

In the previous deliverables D2.3 – Dependency Inference and Analysis – Final Report and D2.4 – Depen-
dency Inference Components, we have extensively addressed Task 2.3: Dependency Analysis by incorporat-
ing domain-specific knowledge about OSGi and Maven in the analysis of dependencies extracted from source
code and project meta-data. In particular, we have shown how the singular use of OSGi within the Eclipse
ecosystem, as exemplified by the Eclipse plug-in model, impacts the way dependencies are declared and man-
aged. The metric providers we have developed in this context take this domain-specific knowledge into account
to produce accurate results. A last update on the software produced in the context of Task 2.3: Dependency
Analysis is available in D2.5 – Dependency Analysis Components.

In this deliverable, we focus specifically on Task 2.4: API Analysis and complete the initial contributions
presented in D2.6 – Framework and API Analysis – Initial Progress Report. Driven by the specific needs
of use cases, e.g., as described for FrontEndArt and Softeam in D1.1 – Project Requirements and D1.2 –
Evaluation Plan, we put a particular emphasis on two main challenges related to API analysis, described below.

The first challenge is the recommendation of API Function Calls and Usage Patterns, which assists developers
in understanding and using complex APIs, and is addressed in Part I. The approach we present emerges from a
close collaboration with WP6 and is extracted from a common paper that has ben published and presented at
the 41st International Conference on Software Engineering [64]:

FOCUS: A Recommender System for Mining API Function Calls and Usage Patterns.
Phuong T. Nguyen, Juri Di Rocco, Davide Di Ruscio, Lina Ochoa, Thomas Degueule, Massimiliano Di Penta.
In Proceedings of the 41st International Conference on Software Engineering (ICSE 2019).

The second challenge is the support for API Evolution and Migration: how to keep up with the evolution of a
library when its public API changes to accommodate new features or refactorings. We focus on this challenge
in Part II. We present an extensive state of the art of the current approaches in the literature and in practice,
focusing on the assumptions and limitations of each. Then, we introduce MARACAS, a new framework for
automatic API migration which focuses on extensibility and integration with CROSSMINER through the use of
M3 models. We conduct several use cases and report on the ability of MARACAS to study API evolution and to
support API migration. We refer the reader to the companion deliverable D2.8 – API Analysis Components
for more information about the concrete CROSSMINER components we developed, and how they integrate with
the CROSSMINER platform and IDE. Finally, we conclude by highlighting the alignment of the contributions
and tools presented here with the project requirements in Part III.

All the contributions introduced here, along with the analysis components presented in D2.8 were created from
scratch specifically for CROSSMINER and were not part of the previous OSSMETER project and platform.

29 June 2019 Version 1.3
Confidentiality: Public Distribution

Page v

D2.7 Framework and API Analysis - Final Report

Part I

API Function Calls and Usage Patterns
Recommendation

1 Introduction

Leveraging the time-honored principles of modularity and reuse, modern software systems development typically
entails the use of external libraries. Rather than implementing new systems from scratch, developers look for,
and try to integrate into their projects, libraries that provide functionalities of interest. Libraries expose their
functionality through Application Programming Interfaces (APIs) which govern the interaction between a client
project and the libraries it uses.

Developers therefore often face the need to learn new APIs. The knowledge needed to manipulate an API can
be extracted from various sources: the API source code itself, the official website and documentation, Q&A
websites such as StackOverflow, forums and mailing lists, bug trackers, other projects using the same API,
etc. However, an official documentation often merely reports the API description without providing non-trivial
example usages. Besides, querying informal sources such as StackOverflow might become time-consuming
and error-prone [81]. Also, API documentation may be ambiguous, incomplete, or erroneous [103], while API
examples found on Q&A websites may be of poor quality [59].

Over the past decade, the problem of API learning has garnered considerable interest from the research
community. Several techniques have been developed to automate the extraction of API usage patterns [82] in
order to reduce developers’ burden when manually searching these sources and to provide them with high-quality
code examples. However, these techniques, based on clustering [68, 105, 114] or predictive modeling [34], still
suffer from high redundancy [34] and—as we show later—poor run-time performance.

To cope with these limitations, we propose a new approach for API usage patterns mining that builds upon
concepts emerging from collaborative-filtering recommender systems [87]. The fundamental idea of these
systems is to recommend to users items that have been bought by similar users in similar contexts. By
considering API methods as products and client code as customers, we reformulate the problem of usage
pattern recommendation in terms of a collaborative-filtering recommender system. Informally, the question the
proposed system can answer is:

“Which API methods should this piece of client code invoke, considering that it has already
invoked these other API methods?"

Implementing a collaborative-filtering recommender system requires to assess the similarity of two customers,
i.e., two projects. Existing approaches assume that any two projects using an API of interest are equally valuable
sources of knowledge. Instead, we postulate that not all projects are equal when it comes to recommending
usage patterns: a project that is highly similar to the project currently being developed should provide higher
quality patterns than a highly dissimilar one. Our recommender system attempts to narrow down the search
scope by considering only the projects that are the most similar to the active project. Thus, methods that are
typically used conjointly by similar projects in similar contexts tend to be recommended first.

We incorporate these ideas into a recommender system that mines OSS repositories to provide developers
with API FunctiOn Calls and USage patterns: FOCUS. Our approach represents mutual relationships between
projects using a 3D matrix and mines API usage from the most similar projects.

29 June 2019 Version 1.3
Confidentiality: Public Distribution

Page 1

D2.7 Framework and API Analysis - Final Report

We evaluated FOCUS on different datasets comprising 610 Java projects from GitHub and 3, 600 JAR archives
from the Maven Central Repository. In the evaluation, we simulate different stages of a development process,
by removing portions of client code and assessing how FOCUS can recommend snippets with API invocations
to complete them. We find that FOCUS outperforms PAM, a state-of-the-art tool for API usage patterns
mining [34], with regards to success rate, accuracy, and execution time.

This deliverable part is organized as follows. Section 2 introduces a motivating example and background notions.
Our recommender system for API mining, FOCUS, is introduced in Section 3. The evaluation is presented
in Section 4, with the key results being analyzed in Section 5. Section 6 discusses the threats to validity. In
Section 7, we present related work and conclude in Section 8.

2 Background

This section presents a motivating example and the main components of the proposed solution. Then, we
introduce the main notions underpinning our approach, mostly originating from Schafer et al. [88] and Chen [17].

2.1 Motivating Example

The typical setting considered in this document is as shown in Figure 1: a developer is implementing some
method to satisfy the requirements of the system being developed. In the specific case shown in Figure 1 (b),
the findBoekrekeningen method queries the available entities and retrieve those of type Boekrekening.
To this end, the Criteria API library1 is used as it provides useful interfaces for querying system entities
according to defined criteria.

Figure 1 (a) depicts the situation where the development is at an early stage and the developer already used
some methods of the chosen API to develop the required functionality. However, she is not sure how to proceed
from this point. In such cases, different sources of information may be consulted, such as StackOverflow, video
tutorials, API documentation, etc. We propose an approach aiming at providing developers with recommen-
dations consisting of a list of API method calls that should be used next, and with usage patterns that can be
used as a reference for completing the development of the method being defined (e.g., code snippets that could
support developers to complete the method definition with the framed code in Figure 1 (b)).

2.2 API Function Calls and Usage Patterns

A software project is a standalone source code unit that performs a set of tasks. Furthermore, an API is
an interface that abstracts the functionalities offered by a project by hiding its implementation details. This
interface is meant to support reuse and modularity [71, 81]. An API X built in an object-oriented programming
language (e.g., the Criteria API in Figure 1) consists of a set TX of public types (e.g., CriteriaBuilder
and CriteriaQuery). Each type in TX consists of a set of public methods and fields that are available to client
projects (e.g., see the method createQuery of the type CriteriaQuery).

A method declaration consists of a name, a (possibly empty) list of parameters, a return type, and a (possibly
empty) body (e.g., the method findBoekrekeningen in Figure 1). Given a set of declarations D in a project
P , an API method invocation i is a call made from a declaration d ∈ D to another declaration m. Similarly, an
API field access is an access to a field f ∈ F from a declaration d in P . API method invocations MI and field

1https://docs.oracle.com/javaee/6/tutorial/doc/gjivm.html

Page 2 Version 1.3
Confidentiality: Public Distribution

29 June 2019

https://docs.oracle.com/javaee/6/tutorial/doc/gjivm.html

D2.7 Framework and API Analysis - Final Report

(a) Initial version

(b) Final version

Figure 1: Motivating example

accesses FA in P form the set of API usages U , i.e., U = MI ∪ FA. Finally, an API usage pattern (or code
snippet) is a sequence (u1, u2, ..., un), ∀uk ∈ U [62].

2.3 Context-aware Collaborative Filtering

As stated by Schafer et al. [88] “Collaborative Filtering (CF) is the process of filtering or evaluating items
through the opinions of other people.” In a CF system, a user that buys or uses an item attributes a rating to
it based on her experience and perceived value. Therefore, a rating is the association of a user and an item
through a value in a given unit (usually in scalar, binary, or unary form). The set of all ratings of a given user is
also known as a user profile [17]. Moreover, the set of all ratings given in a system by existing users can be
represented in a so-called rating matrix, where a row represents a user and a column represents an item.

The expected outcome of a CF system is a set of predicted ratings (aka. recommendations) for a specific user
and a subset of items [88]. The recommender system considers the most similar users (aka. neighbors) to the
active user to suggest new ratings. A similarity function simusr(ua, uj) is used to compute the weight of the
active user profile ua against each of the user profiles uj in the system. Finally, to suggest a recommendation
for an item i based on this subset of similar profiles, the CF system computes a weighted average r(ua, i) of the
existing ratings, where r(ua, i) varies with the value of simusr(ua, uj) obtained for all neighbors [17, 88].

29 June 2019 Version 1.3
Confidentiality: Public Distribution

Page 3

D2.7 Framework and API Analysis - Final Report

Developer

OSS
Repositories

Ranked
Invocations

Code Parser

2

API Generator

Code Builder

Code Snippets

Recommendation
Engine

Data Encoder

Similarity Calculator

Project Comparator

Declaration
Comparator

3

4
1

5

Figure 2: Overview of the FOCUS architecture

Besides, context-aware CF systems compute recommendations based not only on neighbors’ profiles but
also on the context where the recommendation is demanded. Each rating is associated with a context [17].
Therefore, for a tuple C modeling different contexts, a context similarity metric simctx(ca, ci), for ca, ci ∈ C is
computed to identify relevant ratings according to a given context. Then, the weighted average is reformulated
as r(ua, i, ca) [17].

3 Proposed Approach

To tackle the problem of recommending API function calls and usage patterns, we leverage the wisdom of the
crowd and existing recommender system techniques. In particular, we hypothesize that API calls and usages
can be mined from existing codebases, prioritizing the projects that are similar to the one from where the
recommendation is demanded.

More specifically, FOCUS adopts a context-aware CF technique to search for invocations from closely relevant
projects. This technique allows us to consider both project and declaration similarities to recommend API
function calls and usage patterns. Following the terminology of recommender systems, we treat projects as the
enclosing contexts, method declarations as users, and method invocations as items. Intuitively, we recommend a
method invocation for a declaration in a given project, which is analogous to recommending an item to a user in
a given context. For instance, the set of method invocations and the usage pattern (cf. framed code in Figure 1.b)
recommended for the declaration findBoekrekeningen can be obtained from a set of similar projects and
declarations in a codebase. The collaborative aspect of the approach enables to extract recommendations from
the most similar projects, while the context-awareness aspect enables to narrow down the search space further
to similar declarations.

3.1 Architecture

The FOCUS architecture is depicted in Figure 2. To provide its recommendations, FOCUS considers a set
of Open Source Software (OSS) Repositories 1 . The Code Parser 2 component is in charge of extracting
both method declarations and invocations from the source code of these projects. The Project Comparator, a
subcomponent of the Similarity Calculator 3 , computes the similarity between projects in the OSS repositories
and the project under development. Using the set of projects and the information extracted by the Code Parser,

Page 4 Version 1.3
Confidentiality: Public Distribution

29 June 2019

D2.7 Framework and API Analysis - Final Report

Listing 1: M3 model excerpt.
1 m3.declarations = {
2 <|java+method://org/edr/services/impl/StandaardBoekrekeningService/findBoekrekeningen()|,

3 |file:///Users/[...]StandaardBoekrekeningService.java(501,531,<17,4>,<33,5>)|>, [...]}
4
5 m3.methodInvocation = {
6 <|java+method://org/edr/services/impl/StandaardBoekrekeningService/findBoekrekeningen()|,

7 |java+method://javax/persistence/EntityManager/getCriteriaBuilder()|>, [...]}

the Data Encoder component 4 computes rating matrices which are introduced later in this section. Afterwards,
the Declaration Comparator computes the similarities between declarations. From the similarity scores, the
Recommendation Engine 5 generates recommendations, either as a ranked list of API function calls using the
API Generator, or as usage patterns using the Code Builder. Finally, the recommendations are presented to the
developer. In the remainder of this section, we present in greater details each of these components.

3.1.1 Code Parser

FOCUS relies on Rascal M3 [13] to extract method declarations and invocations from a set of OSS repositories,
an intermediate model that performs static analysis on source code to extract facts about a given project. This
model is an extensible and composable algebraic data type that captures both language agnostic and Java-
specific facts in immutable binary relations. These relations represent program information such as existing
declarations, method invocations, field accesses, interface implementations, class extensions, among others [13].
To gather relevant data, Rascal M3 employs the Eclipse JDT Core Component [4] to create and traverse the
abstract syntax trees of the target Java project.

In the context of FOCUS, we consider the data provided by the declarations and methodInvocation relations of
the M3 model. Both of them contain a set of pairs 〈v1, v2〉, where v1 and v2 are values representing locations in
the Rascal environment. These locations are uniform resource identifiers that represent artifact identities (aka.
logical locations) or physical pointers on the file system to the corresponding artifacts (aka. physical locations).
The declarations relation maps the logical location of an artifact (e.g., a method) to its physical location. The
methodInvocation relations map the logical location of a caller to the logical location of a callee.

Listing 1 depicts an excerpt of the M3 model extracted from the code presented in Figure 1.a. As illustrated, the
declarations relation links the logical location of the method findBoekrekeningen, to its corresponding phys-
ical location in the file system. Besides, the methodInvocation relation states that the getCriteriaBuilder
method of the EntityManager type is invoked by the findBoekrekeningen method in the current project.

Rascal M3 follows a conservative approach when building the methodInvocation relation: method invocations are
only included when the callee’s owner type can be resolved. To mitigate this issue, the classpath of each project
must be reconstructed carefully. Thus, given that a plethora of Java projects rely on dependency managers and
modular systems such as Apache Maven [1] and OSGi [6], we use both Maven and Tycho [8] to build Maven
and OSGi-based projects and extract their classpaths. Plain libraries included as JAR archives in the project are
also considered. In the end, we discard method invocations that cannot be properly resolved.

When facing conditional or loop statements, Rascal M3 adds to the methodInvocation relation method calls
present in all branches of the control flow. In the presence of inheritance, Rascal M3 first considers the methods

29 June 2019 Version 1.3
Confidentiality: Public Distribution

Page 5

D2.7 Framework and API Analysis - Final Report

i 1 i 2 i 3 i 4

d1 1 0 1 1
d2 0 1 1 0
d3 1 0 0 1
d4 0 1 0 0

Figure 3: Representation of declarations and invocations

of type T related to the invocation. If the corresponding method is only declared in T or if it overrides a
superclass, the fully qualified name points to the method in T . Otherwise, if the method is inherited from a
superclass T ′ and it is not overridden in T , then the relation is associated to T ′. Besides, method invocations of a
super class are also considered. When considering interfaces, if there is an object o of type T and T implements
interface I , the method invocation through o points to I or T according to the static type of o. Finally, we do
not consider method invocations through dynamic mechanisms such as Java reflection.

3.1.2 Data Encoder

Once method declarations and invocations are extracted, FOCUS represents the relationships among them
using a rating matrix. For a given project, each row in the matrix represents a method declaration and each
column represents a method invocation. A cell is set to 1 if the declaration in the corresponding row contains
the invocation in the column, otherwise it is set to 0. For example, Figure 3 shows the ratings matrix of a project
with 4 declarations p1 3 (d1, d2, d3, d4) and 4 invocations (i1, i2, i3, i4).

To capture the intrinsic relationships among various projects, declarations, and invocations, we come up with
a 3D context-based ratings matrix. In this matrix a third dimension is added to represent a project, which is
analogous to the so-called context in context-aware CF techniques. For example, Figure 4 depicts a list of three
OSS projects P = (pa, p1, p2) represented by three slices with 4 method declarations and 4 method invocations.
Project p1 has already been introduced in Figure 3 and for the sake of readability, the column and row labels are
removed from all slices in Figure 4. There, pa is the active project and it has an active declaration. Active here
means the artifact (project or declaration), being considered or developed. Both p1 and p2 are complete projects
and are strictly similar to the active project pa. The former projects (i.e., p1 and p2) are also called background
data since they are already available and serve as a base for the recommendation process. In practice, the
higher the number of complete projects considered as background data, the higher the probability to recommend
relevant invocations.

1 1 0 0

0 1 0 1

0 0 1 1

1 0 0 1

1 0 1 1

0 1 1 0

1 0 0 1

0 1 0 0

0 0 1 1

0 0 1 1

1 0 0 1

? ? 1 1

Active project (pa)

Similar project (p1)

Similar project (p2)

w=simα(pa,p1)=0.8

w=simα(pa,p2)=0.3

Active declaration (da)

Similar declaration (d1)

Similar declaration (d2)

Figure 4: 3D context-based ratings matrix

Page 6 Version 1.3
Confidentiality: Public Distribution

29 June 2019

D2.7 Framework and API Analysis - Final Report

i2 i3

pa

?

p1

32

p2

2

1

i1

? 2

3

i4

4 2

3

Figure 5: Graph representation of projects and invocations

3.1.3 Similarity Calculator

Exploiting the context-aware CF technique, the presence of additional invocations is deduced from similar
declarations and projects. Given an active declaration in an active project, it is essential to find the subset of the
most similar projects, and then the most similar declarations in that set of projects. To compute similarities, we
employ a weighted directed graph that models the relationships among projects and invocations. Each node in
the graph represents either a project or an invocation. If project p contains invocation i, then there is a directed
edge from p to i. The weight of an edge p→ i represents the number of times project p performs the invocation
i. Figure 5 depicts the graph for the set of projects introduced in Figure 4. For instance, pa has 4 declarations
and all of them have i4 as an invocation. As a result, the edge pa → i4 has a weight of 4. In the graph, a question
mark represents missing information, since for the active declaration in pa, it is not clear if invocations i1 and i2
also belong to it or not.

The similarity between two project nodes p and q is computed by considering their feature sets [27]. Given that
p has a set of neighbor nodes (i1, i2, .., il), the feature set of p corresponds to the vector

−→
φ = (φ1, φ2, .., φl),

with φk being the weight of node ik. This weight is computed as the term-frequency inverse document frequency
value, i.e., φk = fik ∗ log(|P |

aik
), where fik is the weight of the edge p→ ik; |P | is the number of all considered

projects; and aik is the number of projects connecting to ik. Eventually, the similarity between p and q with
their corresponding feature vectors

−→
φ = {φk}k=1,..,l and −→ω = {ωj}j=1,..,m is:

simα(p, q) =

∑n
t=1 φt × ωt√∑n

t=1(φt)
2 ×

√∑n
t=1(ωt)

2
(1)

The similarities among method declarations are calculated using the Jaccard similarity index [43] as follows:

simβ(d, e) =
|F(d)

⋂
F(e)|

|F(d)
⋃
F(e)| (2)

where F(d) and F(e) are the sets of invocations made from declarations d and e, respectively.

3.1.4 API Generator

This component, which is part of the Recommendation Engine, is in charge of generating a ranked list of
API function calls. In Figure 4, the active project pa already includes three declarations, and the developer is
working on the fourth declaration, which corresponds to the last row of the slice. pa has only two invocations,
represented in the last two columns of the matrix (i.e., cells filled with 1). The first two cells are marked with a
question mark (?), indicating that it is unclear whether these two invocations should also be incorporated into pa.

29 June 2019 Version 1.3
Confidentiality: Public Distribution

Page 7

D2.7 Framework and API Analysis - Final Report

The recommendation engine attempts to predict additional invocations for the active declaration by computing
the missing ratings using the following formula [17]:

rd,i,p = rd +

∑
e∈topsim(d)(Re,i,p − re) · simβ(d, e)

∑
e∈topsim(d) simβ(d, e)

(3)

Equation (3) is used to compute a score for the cell representing method invocation i, declaration d of project
p, where topsim(d) is the set of top similar declarations of d; simβ(d, e) is the similarity between d and a
declaration e, computed using Equation (2); rd and re are average ratings of d and e, respectively; and Re,i,p is
the combined rating of declaration d for i in all similar projects, computed as follows [17]:

Re,i,p =

∑
q∈topsim(p) re,i,q · simα(p, q)
∑

q∈topsim(p) simα(p, q)
(4)

where topsim(p) is the set of top similar projects of p; and simα(p, q) is the similarity between p and a project
q, computed using Equation (1). Equation (4) implies that a higher weight is given to projects with a higher
similarity. In practice, it is reasonable since, given a project, its similar projects contain more relevant API calls
than less similar projects. Using Equation (3) we compute all the missing ratings in the active declaration and
get a ranked list of invocations with scores in descending order, which is then suggested to the developer.

3.1.5 Code Builder

This subcomponent is also part of the Recommendation Engine, and it is responsible of recommending usage
patterns to developers. Thus, from the ranked list, top-N function calls are used as query to search the database
for relevant declarations. To limit the search scope, only the most similar projects are considered by means of
the Similarity Calculator. The Jaccard index is used to compute similarities among the selected invocations and
a given declaration. For each query, we search for declarations that contain as many invocations of the query as
possible. Once we identify the corresponding declarations we map back the identified methods to its original
source code. To this aim, we build the corresponding Rascal M3 logical location for each one of the identified
methods, and we seek the corresponding physical location in the declarations relation. Afterwards, we rely
on Rascal to extract and retrieve the code snippet of the declaration from the specified location, which is then
recommended to the developer.

For the sake of illustration, we now present an example of how FOCUS suggests real code snippets, considering
declaration findBoekrekeningen in Figure 1.a as input. The present invocations are used together with the
other declarations in the current project as query to feed the Recommendation Engine. The final outcome is a
ranked list of real code snippets. We choose the top one named findByIdentifier and depict it in Figure 6.
By carefully examining this code and the original one in Figure 1.b, we see that although they are not exactly the
same, they indeed share different function calls and a common intent: both exploit a CriteriaBuilder object
to build, perform a query and eventually get back some results. Furthermore, the outcome of both declarations
is of the List type. Interestingly, compared to the original one, the recommended code appears to be of higher
quality since it includes a try/catch pair to handle possible exceptions. Thus, the recommended code, coupled
with the corresponding list of function calls (i.e., get, equal, where, select, etc.), provides the developer
with helpful directions on how to use the APIs at hand to implement the desired function.

Page 8 Version 1.3
Confidentiality: Public Distribution

29 June 2019

D2.7 Framework and API Analysis - Final Report

Figure 6: Real source code recommended by FOCUS

4 Evaluation

The goal of this evaluation is to assess FOCUS, and compare it with another state-of-the-art tool (PAM [34]),
with the aim of assessing its capability to recommend API usage patterns to developers, while they are writing
code. The quality focus is two-fold: studying the API recommendation accuracy and completeness, as well as the
time required by FOCUS and PAM to provide a recommendation. The context consists of 610 Java open source
projects, and 3, 600 JAR archives from the Maven Central repository [5]. For the sake of reproducibility and
ease of reference, all artifacts used in the evaluation, together with the developed tools, are available online [12].
We choose PAM as a baseline for comparison, because it has been shown to outperform [34] other similar tools
such as MAPO [114] and UP-Miner [105]. To conduct the comparison with PAM, we leverage its original
source code made available online by its authors [33].

In the following, we detail our research questions, the datasets we use, our evaluation methodology, and the
evaluation metrics.

4.1 Research Questions

The evaluation’s research questions are as follows:

RQ1 To what extent is FOCUS able to provide accurate and complete recommendations? This research question
relates to the capability of FOCUS to produce accurate and complete results. Having too many false positives
would end up being counter-productive with developers, whereas having too many false negatives means that
the tool would not be able to provide recommendations in many cases where this is needed;

RQ2 What are the timing performances of FOCUS in building its models and in providing recommendations?
This research question aims at assessing whether, from a timing point of view, FOCUS—compared to PAM—
could be used in practice. We evaluate the time required by both tools to provide a recommendation. We mainly
focus on the recommendation time because, while it is acceptable that the model training phase is relatively
slow (i.e., the model could be built offline), the recommendation time has to be fast enough to make the tool
applicable in practice.

RQ3 How does FOCUS perform compared with PAM? Finally, this research question directly compares the
recommendation capabilities of FOCUS and PAM.

29 June 2019 Version 1.3
Confidentiality: Public Distribution

Page 9

D2.7 Framework and API Analysis - Final Report

4.2 Datasets

To answer the evaluation’s questions, we relied on four different datasets.

The first dataset, SHL, has been assembled starting from 5, 147 randomly selected Java projects retrieved from
GitHub via the Software Heritage archive [26]. To comply with the requirements of PAM, we first restricted
the dataset to the list of projects that use at least one of the third-party libraries listed in Table 1. Most of them
were used to assess the performance of PAM [34]. Each row in Table 1 lists a third-party library, the number of
projects that depend on it, and the number of classes that invoke methods of this library. To comply with the
requirements of FOCUS, we then restricted the dataset to the list of projects containing at least one pom.xml, as
it eases the creation of the M3 models. We thus obtained our first dataset consisting of 610 Java projects.

From SHL, we extracted a second dataset SHS consisting of the 200 smallest (in size) projects of SHL.

As a third dataset, we randomly collected a set of 3, 600 JAR archives from the Maven Central repository, which
we name MVL. Through a manual inspection of MVL, we noticed that many projects only differ in their version
numbers (ant-1.6.5.jar and ant-1.9.3.jar, for instance, are two versions of the same project ant). These cases are
interesting as we assume two versions of the same project share many functionalities [96]. The collaborative-
filtering technique works well given that highly similar projects exist, since it just “copies” invocations from
similar methods in the very similar projects (see Equation (3) and Equation (4)). However, a dataset containing
too many similar projects may introduce a bias in the evaluation. Thus, we decided to populate one more dataset.
Starting from MVL, we randomly selected one version for every project and filtered out the other versions. The
removal resulted in a fourth dataset consisting of 1, 600 projects, which we name MVS .

Three datasets, i.e., SHL, MVL and MVS are used to assess the performance of FOCUS (RQ1). The smallest
dataset SHS is used to compare FOCUS and PAM (RQ2 and RQ3).

Eventually, the process of creating required metadata consists of the following main steps:

• for each project in the dataset the corresponding Rascal M3 model is generated;
• for each M3 model, the corresponding ARFF representations [2] are generated in order to be used as

input for applying FOCUS and PAM during the actual evaluation steps discussed in the next sections.

4.3 Study Methodology

Performing a user study has been accepted as the standard method to validate an API usage recommendation
tool [58, 114]. While user studies are valuable, they are limited in the size of the task a participant can conduct,
and are highly susceptible to individual skills and subjectiveness. Instead, we decide to perform a different,
offline evaluation, by simulating the behavior of a developer working at different stages of a development project
on partial code snippets.

More specifically, we simulate different stages of a development process to study if FOCUS is applicable in
real-world settings, by considering a programmer who is developing a project p. To this end, some parts of p are
removed to mimic an actual development. Given an original project p, the total number of method declarations
it contains is called ∆. However, only δ declarations (δ < ∆) are used as input for recommendation and the rest
is discarded. In practice, this corresponds to the situation when the developer already finished δ declarations,
and she is now working on the active declaration da. For da, the developer has just written π invocations. In
practice, δ is small at an early stage, and increases over the course of time. Similarly, π is small when the
developer just starts working on da. The two parameters δ, π are used to stimulate different development phases.
In particular, we consider the following configurations.

Page 10 Version 1.3
Confidentiality: Public Distribution

29 June 2019

D2.7 Framework and API Analysis - Final Report

Table 1: Fragment of the third-party libraries used by Dataset SHL
Project Name # of Client Projects # of Client Classes

com.google.gson 51 337
io.netty 105 13,456
org.apache.camel 36 1,017
org.apache.hadoop 158 14,596
org.apache.lucene 15 397
org.apache.mahout 25 8541
org.apache.wicket 44 3,360
org.drools 27 886
org.glassfish.jersey 105 3811
org.hornetq 15 123
org.jboss.weld 39 1875
org.jooq 16 243
org.jsoup 23 55
org.neo4j 28 4,983
org.restlet 19 326
org.springside 16 821
twitter4j 45 597

610 55,425

Configuration C1.1 (δ = ∆/2− 1, π = 1): Almost the first half of the declarations is used as testing data and
the second half is removed. The last declaration of the first half is selected as the active declaration da. For da,
only the first invocation is provided as a query, and the rest is used as ground-truth data which we call GT(p).
This configuration mimics a scenario where the developer is at an early stage of the development process and,
therefore, only limited context data is available to feed the recommendation engine.

Configuration C1.2 (δ = ∆/2− 1, π = 4): Similarly to C1.1, almost the first half of the declarations is kept
and the second half is discarded. da is the last declaration of the first half of declarations. For da, the first four
invocations are provided as query, and the rest is used as GT(p).

Configuration C2.1 (δ = ∆ − 1, π = 1): The last method declaration is selected as testing, i.e., da and all
the remaining declarations are used as training data (∆ − 1). In da, the first invocation is kept and all the
others are taken out as ground-truth data GT(p). This represents the stage where the developer almost finished
implementing p.

Configuration C2.2 (δ = ∆− 1, π = 4): Similar to C2.1, da is selected as the last method declaration, and
all the remaining declarations are used as training data (∆− 1). The only difference with C2.1 is that in da, the
first four invocations are used as query and all the remaining ones are used as ground-truth data GT(p).

When performing the experiments, we split a dataset into two independent parts, namely a training set and
a testing set. In practice, the training set represents the OSS projects that have been collected a priori. They
are available at developers’ disposal, ready to be exploited for mining purposes. The testing set represents the
project being developed, or the active project. This way, our evaluation mimics a real development scheme: the
recommender system should produce recommendations for a project based on the data available from a set of
existing projects. We opt for k-fold cross validation [49] as it is widely chosen to evaluate machine learning
models. Depending on the availability of input data, the dataset with n elements is divided into k equal parts,
so-called folds. For each validation round, one fold is used as testing data and the remaining k − 1 folds are

29 June 2019 Version 1.3
Confidentiality: Public Distribution

Page 11

D2.7 Framework and API Analysis - Final Report

used as training data. For this evaluation, we select two values, i.e., k = 10 and k = n. The former corresponds
to ten-fold cross validation and the latter corresponds to leave-one-out cross validation [107].

4.4 Evaluation Metrics

For a testing project p, the outcome of a recommendation process is a ranked list of invocations, i.e., REC(p).
It is our firm belief that the ability to provide accurate invocations is important in the context of software
development. Thus, we are interested in how well a system can recommend API invocations that eventually
match with those stored in GT(p). To measure the performance of the recommender systems, i.e., PAM and
FOCUS, we utilize two metrics, namely success rate and accuracy [27]. Given a ranked list of recommendations,
a developer typically pays attention to the top-N items only. Success rate and accuracy are computed by using
N as the cut-off value. Given that RECN (p) is the set of top-N items and matchN (p) = GT (p)

⋂
RECN (p)

is the set of items in the top-N list that match with those in the ground-truth data, then the metrics are defined as
follows.

Success rate: Given a set of P testing projects, this metric measures the rate at which a recommendation engine
can return at least a match among top-N recommended items for every project p ∈ P .

success rate@N =
countp∈P (|matchN (p)| > 0)

|P | × 100% (5)

where count() counts the number of times the boolean expression given as parameter evaluates to true.

Accuracy: Precision and recall are employed to measure accuracy [27]. Precision@N is the ratio of the top-N
recommended items belonging to the ground-truth dataset:

precision@N =
|matchN (p)|

N
(6)

and recall@N is the ratio of the ground-truth items being found in the top-N items:

recall@N =
|matchN (p)|
|GT (p)| (7)

Recommendation time: As mentioned in RQ2, we measure the time needed by both PAM and FOCUS to
perform a prediction on a given infrastructure, which is a laptop with Intel Core i5-7200U CPU @ 2.50GHz ×
4, 8GB RAM, and Ubuntu 16.04.

5 Results

RQ1: To what extent is FOCUS able to provide accurate and complete recommendations?

To answer this research question, we use the dataset SHL and vary the length of the input data for every testing
project. Two main configurations are taken into account, with two sub-configurations for each as introduced in
Section 4.3. Table 2 shows the success rate for all the configurations. For a small N , i.e., N = 1 (a developer
expects a very brief list of items) FOCUS is still able to provide matches. For example, the success rates of
C1.1 and C1.2 are 24.59% and 30.65%, respectively. When the cut-off value N is increased, the corresponding
success rates improve linearly. For example, when N = 20, FOCUS obtains 40.98% success rate for C1.1 and
47.70% for C1.2. By comparing the results obtained for C1.1 and C1.2, we see that when more invocations

Page 12 Version 1.3
Confidentiality: Public Distribution

29 June 2019

D2.7 Framework and API Analysis - Final Report

Table 2: Success rate for SHL, N={1,5,10,15,20}
SHL

N C1.1 C1.2 C2.1 C2.2
1 24.59 30.65 23.44 29.83
5 31.96 40.00 31.31 39.01
10 35.90 43.77 35.73 43.77
15 39.34 47.21 37.70 45.57
20 40.98 47.70 39.34 46.88

0 0.05 0.1 0.15 0.20 0.25 0.30 0.35 0.40
0

0.05

0.1

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Recall

P
r
e
c
is
io

n

C1.2

C1.1

Figure 7: Precision and recall for C1.1 and C1.2 on SHL

are incorporated into the query, FOCUS provides more precise recommendations. In practice, this means that
the accuracy of recommendations improves with the maturity of the project.

We now consider the outcomes obtained for C2.1 and C2.2. In these configurations, more background data
is available for a recommendation. For C2.1 (δ = ∆− 1, π = 1), the success rates for the smallest values of
N , i.e., N = 1 and N = 5 are 23.44% and 31.31%, respectively. In other words, it improves with N . The
same trend can be observed with other cut-off values, i.e., N = 10, 15, 20: the success rates for these settings
increase correspondingly. We notice the same pattern considering C2.1 and C2.2 together, or C1.1 and C1.2
together: if more invocations are used as query, FOCUS suggests more accurate invocations.

Figure 7 and Figure 8 depict the precision and recall curves (PRCs) for the above mentioned configurations.
In particular, Figure 7 represents the accuracy when almost the first half of the declarations (δ = ∆/2 − 1)
together with one (C1.1) and four invocations (C1.2) from the testing declaration da are used as query. Since
a PRC close to the upper right corner indicates a better accuracy [27], we see that the accuracy of C1.2 is
superior to that of C1.1. Similarly with C2.1 and C2.2, as depicted in Figure 8, the accuracy improves
substantially when the query contains more invocations. These facts further confirm that FOCUS is able to
recommend more relevant invocations when the developer keeps coding. This improvement is obtained since the
similarity between declarations can be better determined when more invocations are available as comprehended
in Equation (4).

The results reported so far appear to be promising at the first sight. However, by considering Table 2, Figure 7,
and Figure 8 together, we realize that both success rate and accuracy are considerably low: The best success rate
is 47.70% for C1.2 when N = 20, which means that more than half of the queries got no match. In this sense,

29 June 2019 Version 1.3
Confidentiality: Public Distribution

Page 13

D2.7 Framework and API Analysis - Final Report

0 0.05 0.1 0.15 0.20 0.25 0.30 0.35 0.40
0

0.05

0.1

0.15

0.20

0.25

0.30

0.35

Recall

P
r
e
c
is
io

n
C2.2

C2.1

Figure 8: Precision and recall for C2.1 and C2.2 on SHL

it is necessary to ascertain the cause of this outcome: Is FOCUS only capable of generating such moderate
recommendations, or is it because of the data? Our intuition is that SHL is rather small in size, which means the
background data available for the recommendation process is limited. Thus, to further validate the performance
of FOCUS, we perform additional experiments by considering more data, using both MVL and MVS . For this
evaluation, we just consider the case when only one invocation together with other declarations are used as
query, i.e., C1.1 and C2.1. This aims at validating the performance of FOCUS, given that the developer just
finished only one invocation in da.

Table 3 depicts the success rate obtained for different cut-off values using both datasets. The success rates for
all configurations are much better than those of SHL. The scores are considerably high, even when N = 1, the
success rate obtained by C1.1 and C2.1 are 72.30% and 72.80%, respectively. For MVS , the corresponding
success rates are lower. However, this is understandable since the set has less data compared to MVL.

The PRCs for MVL and MVS are shown in Figure 9 and Figure 10, respectively. We see that for MVL, a
superior performance is obtained by configuration C2.1, i.e., when more background data is available for
recommendation in comparison to C1.1. For MVS , we witness the same trend as with success rate: the difference
between the two configurations C1.1 and C2.1 is negligible. Considering both Figure 9 and Figure 10, we
observe that the overall accuracy for MVL is much better than that of MVS . The maximum precision and recall
for MVL are 0.75 and 0.62, respectively. Whereas, the maximum precision and recall for MVS are 0.52 and
0.36, respectively. This further confirms the fact that with more similar projects, the system can provide better
recommendations. Referring back to the outcomes of SHL, we observe that the performance on MVL and MVS is
improved substantially.

Table 3: Success rate for MVL and MVS , N={1,5,10,15,20}
MVL MVS

N C1.1 C2.1 C1.1 C2.1
1 72.30 72.80 49.40 50.10
5 82.80 82.70 64.60 65.40
10 86.40 86.40 69.30 70.10
15 88.10 87.90 71.60 72.20
20 89.20 89.00 73.30 74.30

Page 14 Version 1.3
Confidentiality: Public Distribution

29 June 2019

D2.7 Framework and API Analysis - Final Report

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Recall

P
r
e
c
is
io

n

C2.1

C1.1

Figure 9: Precision and recall for C1.1 and C2.1 on MVL

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.1

0.2

0.3

0.4

0.5

0.6

Recall

P
r
e
c
is
io

n

C1.1

C2.1

Figure 10: Precision and recall for C1.1 and C2.1 on MVS

To sum up, we conclude that the performance of FOCUS relies on the availability of background data. The system
works effectively given that more OSS projects are available for recommendation. In practice, it is expected that
we can crawl as many projects as possible, and use them as background data for the recommendation process.

RQ2: What are the timing performances of FOCUS in building its models and in providing recommendations?

To measure the execution time of PAM and FOCUS for the very first attempt, we ran both systems on the SHL
dataset, consisting of 610 projects. With PAM, for each testing project, we combined the extracted query with
all the other training projects to produce a single ARFF file provided as input for the recommendation process
[34]. Nevertheless, we then realized that the execution of PAM is very time-consuming. For instance, for one
fold containing 1 testing and 549 training projects (i.e., 610/10 · 9 training folds) with 80MB in size, PAM
takes around 320 seconds to produce the final recommendations. Instead, the corresponding execution time by
FOCUS is quite faster than PAM, around 1.80 seconds. Given the circumstances, it is not feasible to run PAM
on a large dataset.

Therefore, we decided to use the SHS dataset (consisting of 200 projects) for this purpose. For the experiments,
we opt for leave-one-out cross-validation [107], i.e., one project is used as test set, and all the remaining
199 projects are used for the training. The rationale behind the selection of this method instead of ten-fold
cross-validation is that we want to exploit as much as possible the projects available as background data,
given a testing project. The validation was executed 200 times, and we measured the time needed to finish
the recommendation process. On average, PAM required 9 seconds to provide each recommendation while
FOCUS just required 0.095 seconds, i.e., it is two orders of magnitude faster and suitable to be integrated into a
development environment.

29 June 2019 Version 1.3
Confidentiality: Public Distribution

Page 15

D2.7 Framework and API Analysis - Final Report

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Recall

P
r
e
c
is
io

n PAM

FOCUS

Figure 11: Precision and recall for PAM and FOCUS using SHS .

RQ3: How does FOCUS perform compared with PAM?

For the reasons explained in RQ2, the comparison between PAM and FOCUS has been performed on the SHS
dataset. FOCUS gains a better success rate than PAM does, i.e., 51.20% compared to 41.60%. Furthermore, as
depicted in Figure 11, there is a big gap between the PRCs for PAM and FOCUS, with the one representing
FOCUS closer to the upper right corner. This implies that the accuracy obtained by FOCUS is considerably
superior to that of PAM.

A statistical comparison of PAM and FOCUS using Fisher’s exact test [32] indicates that, for 1 ≤ N ≤ 20,
FOCUS always outperforms PAM: We achieved p-values < 0.001 (adjusted using the Holm’s correction [41])
in all cases, with an Odds Ratio between 2.21 and 3.71, and equal to 2.54 for N = 1. In other words, FOCUS
has over twice the odds of providing an accurate recommendation than PAM.

It is worth noting that the overall accuracy of FOCUS achieved and reported in this experiment is, although
better than that of PAM, still considerably low. Following the experiments on MVL and MVS from RQ1, we
believe that this can be attributed to the limited background data available for the evaluation, since we only
consider 200 projects.

In summary, by considering both RQ2 and RQ3, we come to the conclusion that FOCUS obtains a better
performance in comparison to PAM with regards to success rate, accuracy and execution time. Lastly, since
PAM takes considerable time to produce the final recommendations, it might be impractical to deploy in a
development environment.

6 Threats to Validity

The main threat to construct validity concerns the simulated setting used to evaluate the approaches, as opposed
to performing a user study. While our study has simulated the presence of incomplete code (with different
degrees on incompleteness) for which a recommendation it is required, in a real development setting the order
in which one writes statements might not fully reflect our simulation. This would make, in perspective, a further
evaluation involving developers highly desirable.

Threats to internal validity concern factors internal to our study that could have influenced the results. One
possible threat is represented by the achieved results for the datasets SHL and SHS . As noted, these datasets
exhibit lower precision/recall with respect to MVL and MVS mainly because of the limited training set used.

Page 16 Version 1.3
Confidentiality: Public Distribution

29 June 2019

D2.7 Framework and API Analysis - Final Report

However, such datasets, and in particular SHS , were created to allow us to compare FOCUS with PAM, otherwise
less feasible on larger datasets.

Threats to external validity concern the generalization of our findings. Our tool is currently limited to Java
programs, though in principle the approach could be implemented and evaluated with other programming
languages.

7 Related Work

In this section, we summarize related work about API usage recommendation, and relate our contributions to
the literature.

7.1 API Usage Pattern Recommendation

Acharya et al. [9] present a framework to extract API patterns as partial orders from client code. To this aim,
control-flow-sensitive static API traces are extracted from source code and sequential patterns are computed.
While this approach proposes a representation for API patterns, suggestions regarding API usage are still
missing.

MAPO (Mining API usage Pattern from Open source repositories) is a tool that mines API usage patterns
from client projects [114]. The system analyzes source files to collect API usage information and groups
the API methods into clusters. It then mines API usage patterns from the clusters, ranks them according to
their similarity with the current development context, and recommends code snippets to developers. Similarly,
UP-Miner [105] mines API usage patterns by relying on SeqSim, a clustering strategy that reduces patterns
redundancy and improves coverage. UP-Miner employs the BIDE algorithm [106] to mine API frequent closed
call sequences. Differently from FOCUS, these approaches are based on clustering techniques, and consider all
client projects in the mining regardless of their similarity with the current project.

Fowkes et al. introduce PAM (Probabilistic API Miner), a parameter-free probabilistic approach to mine API
usage patterns [34]. PAM uses the structural Expectation-Maximization (EM) algorithm to infer the most
probable API patterns from client code, which are then ranked according to their probability. PAM outperforms
both MAPO and UP-Miner (lower redundancy and higher precision). We directly compare FOCUS to PAM in
Section 4.

Niu et al. extract API usage patterns using API class or method names as queries [68]. They rely on the
concept of object usage (method invocations on a given API class) to extract patterns. The approach of Niu
et al. outperforms UP-Miner and Codota [3], a commercial recommendation engine, in terms of coverage,
performance, and ranking relevance. In contrast, FOCUS relies on context-aware CF techniques—which favors
recommendations from similar projects, and uses the whole development context to query API method calls.

The NCBUP-miner (Non Client-based Usage Patterns) [84] is a technique that identifies unordered API usage
patterns from the API source code, based on both structural (methods that modify the same object) and semantic
(methods that have the same vocabulary) relations. The same authors also propose MLUP [83], which is based
on vector representation and clustering, but in this case client code is also considered.

DeepAPI [38] is a deep-learning method used to generate API usage sequences given a query in natural language.
The learning problem is encoded as a machine translation problem, where queries are considered the source
language and API sequences the target language. Only commented methods are considered during the search.
The same authors [37] present CODEnn (COde-Description Embedding Neural Network), where, instead of

29 June 2019 Version 1.3
Confidentiality: Public Distribution

Page 17

D2.7 Framework and API Analysis - Final Report

API sequences, code snippets are retrieved to the developer based on semantic aspects such as API sequences,
comments, method names, and tokens.

With respect to the abovementioned approaches, FOCUS uses CF techniques to recommend and rank API
method calls and usage patterns from a set of similar projects. In the end, not only relevant API invocations are
recommended, but also code snippets are returned to the developer as usage examples.

7.2 API-Related Code Search Approaches

Strathcona [42] is a recommender system used to suggest API usage. It is an Eclipse plug-in that extracts the
structural context of code and uses it as a query to request a set of code examples from a remote repository.
Six heuristics (associated to class inheritance, method calls, and field types) are defined to perform the match.
Similarly, Buse and Weimer [15] propose a technique for synthesizing API usage examples for a given data
type. An algorithm based on data-flow analysis, k-medoids clustering, and pattern abstraction is designed. Its
outcome is a set of syntactically correct and well-typed code snippets where example length, exception handling,
variables initialization and naming, and abstract uses are considered.

Moreno et al. [58] introduce MUSE (Method USage Examples), an approach designed for recommending code
examples related to a given API method. MUSE extracts API usages from client code, simplifies code examples
with static slicing, and detects clones to group similar snippets. It also ranks examples according to certain
properties (i.e., reusability, understandability, and popularity) and documents them.

SWIM (Synthesizing What I Mean) [77] seeks API structured call sequences (control and data-flows are
considered), and then synthesizes API-related code snippets according to a query in natural language. The
underlying learning model is also built with the EM algorithm. Similarly, Raychev et al. [79] propose a code
completion approach based on natural language processing, which receives as input a partial program and
outputs a set of API call sequences filling the gaps of the input. Both invocations and invocation arguments are
synthesized considering multiple types of an API.

Thummalapenta and Xie propose SpotWeb [98], an approach that provides starting points (hotspots) for
understanding a framework, and highlights where examples finding could be more challenging (coldspots).
McMillan et al. [54] propose Portfolio, a tool that finds relevant functions implementing high-level requirements.
Other tools exploit StackOverflow discussions to suggest context-specific code snippets and documentation [21,
72, 73, 74, 78, 80, 95, 99].

8 Conclusion

In this deliverable part, we introduced FOCUS, a context-aware collaborative-filtering system to assist developers
in selecting suitable API function calls and usage patterns. To validate the performance of FOCUS, we conducted
a thorough evaluation on different datasets consisting of GitHub and Maven open source projects. The evaluation
was twofold. First, we examined whether FOCUS is applicable to real-world settings by providing developers
with useful recommendations as they are programming. Second, we compared FOCUS with a well-established
baseline, i.e., PAM, with the aim of showcasing the superiority of our proposed approach. Our results show
that FOCUS recommends API calls with high success rates and accuracy. Compared to PAM, FOCUS works
both effectively and efficiently as it can produce more accurate recommendations in a shorter time. The main
advantage of FOCUS is that it can recommend real code snippets that match well with the development context.
In contrast with several existing approaches, FOCUS does not depend on any specific set of libraries and just
needs OSS projects as background data to generate API function calls. Lastly, FOCUS also scales well with

Page 18 Version 1.3
Confidentiality: Public Distribution

29 June 2019

D2.7 Framework and API Analysis - Final Report

large datasets by using the collaborative-filtering technique that helps sweep irrelevant items, thus improving
efficiency. With these advantages, we believe that FOCUS is suitable for supporting developers in real-world
settings.

We refer the reader to the companion deliverable D2.8 – API Analysis Components for more information on
the implementation of FOCUS and its integration with the overall architecture of CROSSMINER.

29 June 2019 Version 1.3
Confidentiality: Public Distribution

Page 19

D2.7 Framework and API Analysis - Final Report

Part II

API Evolution and Migration

9 Introduction

Modularity and reuse in software engineering enable software engineers to rely on external libraries providing
specific functionalities into the system they develop. The features of a library are exposed through an Application
Programming Interface (API) which specifies what are the features that can be accessed and how to access them.

However, libraries are software themselves and, just like any software, they evolve to incorporate new features,
to fix bugs, or simply to refactor their source code. When a library evolves, it is likely that its public API also
evolves. Depending on the kind of changes introduced in the public API, it may be required to migrate the client
code using this API if the developers want to benefit from the latest version of the library.

In this deliverable part, we first study this problem through an extensive state of the art in Section 10. Then,
we present our framework to support API migration, MARACAS, in Section 11 and evaluate it on several case
studies in Section 12. We conclude in Section 13.

10 State of the Art

10.1 API Switching and Upgrading

Since the early 2000’s, researchers have invested time and effort on tackling the API switching and upgrading
problem. It was only later in 2012 that Meng et al. [56] introduced two main categories to classify existing
work: operation-based and matching-based approaches. We aim at extending this classification, as well as
referencing and classifying new work in the field. Thus, we identify three main categories in the API switching
and upgrading field. First, record-and-replay approaches [108], also referred to as operation-based approaches,
leverage Integrated Development Environments (IDE) to record changes made by developers during API
migration. These changes are stored as a list of operations that are then replayed by other developers who are
facing a similar migration context [56]. Second, matching-based approaches derive API mappings based on
source code differences between two APIs (including two versions of the same API). Third, wisdom-of-the-
crowd approaches consider a code base of pairs of projects that already went through a migration process. They
extract API mappings from the code base, assuming that studying how developers managed to go from one API
to the other provides valuable information.

In the following sections, we dive into the state of the art of each of these approaches. Table 4 and Table 5
present a high-level overview of the studied approaches, together with details regarding their publication year,
expected inputs and outputs, type of mappings (i.e., one-to-one, one-to-many, many-to-one, many-to-many, and
API usage), assumptions, and availability of a tool.

10.1.1 Record-and-replay Approaches

Record-and-replay approaches are pioneers in the API migration field. The main idea behind them is that
developers’ actions can be recorded during a migration task to be replayed afterwards in a similar context.

Page 20 Version 1.3
Confidentiality: Public Distribution

29 June 2019

D2.7 Framework and API Analysis - Final Report

Table 4: API switching and upgrading approaches.
Approach Year Input(s) Output(s) Mappings Assumptions Tool

JBuilder [44] 2005
API operations (trace
file), and client source
code

Modified client source
code (by replaying
operations)

Traces

• Developers and users rely on
the same IDE.

• API changes are directly
mapped to API uses.

–

CatchUp! [40] 2005
API operations (trace
file), and client source
code

Modified client source
code (by replaying
operations)

Traces

• Developers and users rely on
the same IDE.

• API changes are directly
mapped to API uses.

–

Diff-CatchUp [110] 2007
Source code of two
API versions, and
client source code

API changes,
plausible API
replacements, and
API usage examples2

One-to-one
and API
usage

• All API migration issues are
reported by the compiler.

• API changes are reflected
within the API itself.

• Deprecated and visibility-
restricted entities can be treated
as removed.

–

SemDiff [24] 2008
API source code
repository and client
source code

API changes and API
replacement (method
invocations and
confidence value)

API usage

• Modified API methods are not
root methods3.

• Calls to removed methods are
replaced by one or more
method invocations.

• Confidence value threshold is
known.

[25]

AURA [108] 2010 Source code of two
API versions API migration rules

One-to-
many and
many-to-
one

• A removed method is replaced
by one or more methods.

• One or more removed methods
are replaced by one method.

• Only API method evolution is
considered.

[109]

HiMa [56] 2012 Revisions between
two releases of an API API migration rules Many-to-

many

• Revision comments contain
information about API
migration.

[55]

29 June 2019 Version 1.3
Confidentiality: Public Distribution

Page 21

D2.7 Framework and API Analysis - Final Report

Table 5: API switching and upgrading approaches.
Approach Year Input(s) Output(s) Mappings Assumptions Tool

MathFinder [86] 2014
API-independent
mathematical
expression

Pseudo-code
comprised of API
methods

API usage

• APIs and client programs count
with complete and valid test
suites.

• API developers provide
mappings between API and
API-independent data types.

[85]

Schäfer et al. [89] 2008 Client codebase API migration rules One-to-one

• Learning thresholds can be
computed based on parameter
analysis.

• There is an existing client
codebase with API migrations.

–

LibSync [63] 2010

Source code of two
API versions, client
source code, and
client codebase

Locations of affected
client code and edit
operations

API usage

• An API is only accessed via
method invocations and
inheritance.

• There is an existing client
codebase with API migrations.

• Similarity thresholds are
known.

–

Rosetta [36] 2013 Client codebase API migration rules Many-to-
many

• Up to two methods are
considered per mapping.

• Client programs must be
executed in similar ways.

• Inference thresholds are known.

–

Teyton et al. [97] 2013
Revisions of two API
versions and client
codebase

API migration rules One-to-
many

• “There are few migration
segments in a project history,
with short lengths.”

• It is unlikely to have more than
one API migration in a short
time span.

• Rollback of APIs do not happen
frequently.

–

Page 22 Version 1.3
Confidentiality: Public Distribution

29 June 2019

D2.7 Framework and API Analysis - Final Report

We highlight two main approaches in this category: JBuilder and CatchUp! JBuilder [44] is a development
environment that supports the creation of Java applications, applets, servlets, and JavaBeans. It is able to record
the refactoring operations performed in a given project. These traces are stored so developers can later reuse
them, upgrading their own projects to the new API version. JBuilder provides a dialog box where local and
global refactorings can be automatically applied to the client code. If the client code still reports errors after
applying refactoring operations, JBuilder provides error insight capabilities to help in the migration process.
For instance, if a method has been renamed and no automatic refactoring is available, then the developer can
identify the broken code, check method alternatives, and choose the one that replaces the old method. This
refactoring is then applied to all occurrences of the renamed method, and the action is stored for future use. This
refactoring pipeline is known as distributed refactoring.

CatchUp! is an approach that captures API refactoring operations to replay them in other client projects that
also need to migrate [40]. The case of deprecated methods is a particular case of API migration that must be
considered. Henkel and Diwan account for this situation and propose ways to tackle this scenario. In fact,
they estimate that around 59% of deprecated methods can be easily replaced with refactoring operations. With
CatchUp!, refactorings made by API developers are recorded in a trace file by the IDE. Then, this file is shipped
to the client developers, so they can replay the operations in their own code. With this strategy, deprecated
methods related to refactoring operations can be deleted from the API, given that client code will automatically
evolve according to the operations within the trace file. Although, there is no validation of the CatchUp! tool in
the article that introduces it, the authors do show an application example where a developer performs a set of
refactorings to the BCEL library. These operations are then captured by the CatchUp! tool in the Eclipse IDE,
and an explanation of how developers can upgrade their own code is given.

The main advantage of these approaches is the possibility to directly capture the API refactoring operations.
Consequently, precision and recall are positively affected. Nonetheless, these approaches are highly reliant on
the IDE capabilities: both API developers and API users become dependent on the underlying technology. To
favour portability, new IDE-independent techniques should be provided. We explain some of these techniques
in the following sections.

10.1.2 Matching-based Approaches

When thinking about supporting API migration, it comes naturally to check the differences between two API
versions. The difference between them results in the set of operations that must be considered by API users
when migrating to a new version (or a similar API). These operations or migration rules are derived by using
different type of heuristics based on call-dependency analysis, text similarity, structure similarity, and various
other metrics [108]. In this section, we present some of these approaches [24, 56, 86, 108, 110], reviewing the
employed techniques, their strengths, and drawbacks.

Xing and Stroulia [110] present Diff-CatchUp. As its name suggests, Diff-CatchUp is a tool that detects changes
between two API versions based on model differencing. What API changes have been made? What are their
plausible replacements in the new version? Are there any examples? These are the main questions that Xing
and Stroulia want to answer with their tool. With this goal in mind, Diff-CatchUp considers three main phases.
First, to compute API differences, they use UMLDiff [111]. API differences may refer to renamings, moves,
removals, and additions of certain API elements (i.e., subsystems, packages, classes, fields, methods); attribute
changes (e.g., deprecation, visibility); and changes in containment and inheritance relations. Second, when a
migration problem is detected in the client code, Diff-CatchUp creates a set of suggestions. These suggestions
include the origin of the change, possible replacements, and a set of usage examples (taken from the API
code history itself). Third, these suggestions are ordered and displayed to the developer according to four sets
of heuristics (i.e., name, inheritance, usage, and association) and the similarity between API entities’ names.

29 June 2019 Version 1.3
Confidentiality: Public Distribution

Page 23

D2.7 Framework and API Analysis - Final Report

When deprecating API elements or restricting their visibility, Diff-CatchUp treats them as removed elements.
Diff-CatchUp is evaluated using two case studies. The tool results are compared against a set of manual API
mappings, identified by a group of developers. If the manual change appears in the top-ten suggestions of Diff-
CatchUp, it is considered as a successful recommendation. In the end, the authors report a success rate of 92.7%
and 76.9% for the two case studies.

The idea of considering migration examples from within the target API, is also adopted by Dagenais and
Robillard [24]. They introduce SemDiff, a recommendation system that suggests API upgrading mappings.
To this aim, SemDiff analyses how the API adapts to its own changes. The generation of recommendations
is triggered when a broken method invocation is found within client source code. Similar to Diff-CatchUp,
each recommendation is accompanied by a replacement method, a confidence value, and usage examples. The
confidence value is a key aspect for ordering the recommendations retrieved to the API user. A threshold
over the recommendation’s confidence value is set to filter false positives. To evaluate SemDiff, the authors
consider a case study with one evolving API (Eclipse Java Development Tool) and three client-projects requiring
API adaptations. Automatically derived mappings are compared against the manual migration performed for
each one of the client projects. As main results, SemDiff found useful recommendations for 97% of broken
methods. In addition, SemDiff’s results are compared against results obtained with other two state-of-the-art
tools (RefactoringCrawler [28] and Kim et al. [46] tool) for detecting code changes. Instead of improving
the results of the latter, SemDiff provides complementary information mostly related to the identification of
non-refactoring changes.

Wu et al. [108] propose AURA (AUtomatic change Rule Assistant), an approach that identifies API migration
rules by combining call dependency analysis and text similarity. Research is also focused on identifying one-
to-many, many-to-one and simply deleted mappings, which according to their own evaluation cover 8.08% of
migrated methods of four real-world systems. In the overall approach, AURA first identifies method invocations
through call dependency analysis. Afterwards, method signatures are tokenized and the similarity of any two
methods is computed using first their signatures, then their Levenshtein distance (which indicates how different
the methods are), and lastly, longest common subsequence (which indicates how common the methods are).
It is important to note that a mapping may have multiple target methods as candidates. The final mappings
are derived based on a confidence value computation, which –contrary to SemDiff [24]– does not imply the
specification of additional thresholds. To evaluate the approach, authors use AURA to migrate five Java APIs.
They compare AURA’s behaviour against results obtained with Kim et al. [46] and Schäfer et al. [89] approaches,
as well as against SemDiff [24]. In the first two cases, there is a relative recall improvement of 53.07%, and
precision tends to be the same (relative difference of -0.1%). In the latter case, AURA has a precision of 92.86%
whilst SemDiff reaches a 100% precision.

Meng et al. [56] also conduct an API migration research based on call-dependency analysis. Nevertheless, they
take a step further: they do consider whole revisions in the version control system of an API. All revisions
between two releases of an API are studied and aggregated. Then, both comments and source code are analysed.
The main result of this work is enclosed in the HiMa (History-based Matching) tool. This solution derives
API evolution rules after matching pairs of consecutive revisions of the corresponding library. Comments of
the target revisions are parsed, and raw migration rules are extracted. These rules are related to an action (i.e.,
addition, deletion, modification) and a set of API entities (i.e., class, method). After their identification, rules
are validated against source code according to a set of heuristics. Many-to many mappings, as well as simply-
deleted methods can be identified with HiMa. HiMa is compared against AURA when migrating three Java
projects. In most cases, HiMa presents better precision and recall values, however it shows a high computational
cost.

Lastly, we consider a more specific approach that tackles the problem of discovering and migrating math APIs.
Both API switching and upgrading are considered. The name of the approach is MathFinder and is introduced

Page 24 Version 1.3
Confidentiality: Public Distribution

29 June 2019

D2.7 Framework and API Analysis - Final Report

by Santhiar et al. [86]. In this section, we will only highlight the API migration capabilities offered by this
approach. In general, MathFinder heavily relies on unit tests, to such an extent that it uses tests as a description
of method semantics. These unit tests are mined to identify methods that can solve a user problem. To this aim,
a user specifies a math expression in an API-independent way. This expression is evaluated by a math language
interpreter, working as a user query. MathFinder then extracts subexpressions from this query and mines unit
tests of APIs. A mapping among variables in the math subexpressions and method parameters is performed (aka.
actuals-to-formals mappings). To successfully perform this task, the API developer must provide code that maps
the interpreter data types into the API data types. Afterwards, methods are ranked according to the number of
times the corresponding unit test provides the same results as the ones obtained with the math interpreter. Lastly,
pseudo-code is synthetized and retrieved to the developer. To test their approach, Santhiar et al. use MathFinder
on a collection of math expressions. They observe a precision of 98% when synthesizing pseudo-code. They
also migrate an internal API of Weka, a machine learning library for Java programs. In 94% of the cases they
get a valid migration suggestion.

The aforementioned approaches are promising, given that they not depend on IDE environments or big source
code corpora. However, reaching high precision and recall is one of the biggest challenges they face. Arbitrary
or complex heuristics are required to enhance the derived results. Moreover, as developers, we need to somehow
guarantee that the suggested API mappings or migrated code are valid. Some further steps are needed to provide
practical solutions. Improving the way tools are evaluated and the way API mappings are verified are relevant
aspects to current research. More recent approaches leverage version control systems and big codebases to
obtain mappings based on the wisdom of the crowd. They are explored in the next subsection.

10.1.3 Wisdom-of-the-crowd Approaches

The wisdom-of-the-crowd category is an apparently new group that was actually mentioned by Meng et al. [56] in
their HiMa article. They referred to it as a sub-category of the matching-based approaches. Their differentiating
factor is that these solutions infer API mappings from client programs (aka. instantiation code) instead of only
considering two API versions. Given the increasing popularity of software repositories mining, and the need to
leverage the so-called wisdom of the crowd, we extract this new category and we consider it in isolation. As its
name suggests, the main goal of the solutions listed in this category is to extract knowledge from the collective
intelligence of a group [94]. In this section, we present wisdom-of-the-crowd approaches [36, 63, 89, 97]
appearing in the early 2010’s (apart from a few exceptions) until our days.

Schäfer et al. [89] approach can be considered as the pathfinder of the wisdom-of-the-crowd solutions. They
aim at mining API migration rules from a codebase containing already migrated versions of client code. They
go beyond identification of refactoring operations, noticing that between 10% and 34% of changes within three
APIs, are related to what they call conceptual changes. The authors are especially aware of complex software
evolution situations, where for instance, outdated code is not removed immediately but it is first marked as
deprecated [28]. This is also the case when one code unit is affected by multiple modifications (e.g., renaming
and moving). The whole approach is based on association rule mining [10]. The authors consider structural
context to filter API usages in clients’ code. They also define four change patterns to avoid the creation of
unwanted migration rules. Finally, they ignore unchanged API usages to avoid the introduction of noise in the
data. To improve the interestingness of the derived rules, minimum support (i.e., number of transactions that
contain all items in the rule) and confidence (i.e., percentage of transactions that contain the antecedent of the
rule and the whole consequence) thresholds are required. The approach is evaluated with three Java projects. A
qualitative comparison with RefactoringCrawler [28], is also performed. They show that results obtained with
both techniques are complementary. The reported precision of the tool is 86.7%.

29 June 2019 Version 1.3
Confidentiality: Public Distribution

Page 25

D2.7 Framework and API Analysis - Final Report

As in the case of Diff-CatchUp, Nguyen et al. [63] introduce a model-differencing approach to identify changes
between API versions. However, this technique is classified as a wisdom-of-the-crowd approach given that it
considers a set of client programs that have already been migrated to a different API version. The approach
is called LibSync and it considers four main phases. First, the two API versions are represented as trees,
so they can be aligned. The alignment is done based on text similarity and a mapping algorithm based on
UMLDiff [111]. Addition, deletion, renaming, moving, and modification actions might be identified. Second,
API usages are extracted from the client codebase. The authors assume two different kinds of usages: method
invocations (aka. API i-usage) and class inheritance (aka. API x-usage). These usages are then represented as
Groum (GRaph based Object Usage Model) graphs [66]. A Groum is a graph representation of API usages.
Each node in the graph represents an action (e.g., method invocation, field access) or a control point (e.g.,
conditional, loop). In addition, edges represent existing control or data dependencies among nodes. Third, API
usages are aligned through text-similarity and graph-alignment algorithms. Finally, LibSync recommends a set
of locations in the client code that should be modified, as well as the corresponding edit operations. LibSync is
evaluated on three open source projects, and authors report a precision that oscillates between 97% and 100%.
The tool is also compared against Kim et al. approach [46], claiming that LibSync is more accurate.

Gokhale et al. [36] introduce Rosetta. This approach aims at supporting the automatic creation of a database
where mappings between any two target and source APIs are stored. The approach considers four main steps.
First, Rosetta collects application pairs. This means that a database of applications written in both source and
target APIs is built. Second, each application pair is executed in similar ways, using similar features. A log of
traces, mainly including method invocations, is recorded in parallel. The main output of this phase is a database
with trace pairs related to the target applications. Third, traces are analysed, and an inference algorithm is used
to derive mappings from the target traces. A probability related to the likelihood of having such mappings is also
retrieved. The inference algorithm considers various attributes to compute probabilities, namely call frequency,
call position, call context (i.e., neighbour methods), and method names. The latter uses the Levenshtein edit
distance to compute the similarity. Fourth, the inference of multiple traces is combined using the weighted
average of the probabilities. The more data there is regarding an inferred mapping, the stronger the confidence
in that mapping. The approach is evaluated with 21 JavaME and Android pairs. These pairs were independently
developed. In 70% of cases Rosetta returned at least one valid mapping in its top-ten list. Lastly, in 40% of the
cases the top-ranked result was a valid mapping.

The last approach presented in this section corresponds to the research done by Teyton et al. [97]. In this
solution, API mappings are extracted from versions of projects that already underwent a migration process.
There are three main tasks performed by this approach. First, API migration is identified in a given project
history. This approach considers chunks, which are added, removed, or removed and added lines of code,
instead of considering method scopes. Second, code changed during the migration segment is identified by
means of using textual differencing. Only the commits that handle source and target API methods are studied to
generate candidate API mappings. Third, a filtering method is used to improve the precision of the solution. To
test the approach, a corpus of 11,598 open-source Java projects is considered. These are non-empty projects
downloaded from GitHub, GoogleCode, and SourceForge. The main goal is to detect API mappings between
four pairs of Java APIs (i.e., commons.io-guava.io, commons.lang-guava.lang, org.json-gson, jmock-mockito).
The tool detected 135 correct mappings, having a precision of about 50% and a recall of 85%. Moreover, 33%
of the mappings contained in this set are one-to-many mappings. The approach is also compared against Schäfer
et al. approach [89], outperforming their results.

To wrap up the section, we observe that the main strength of wisdom-of-the-crowd approaches resides on
leveraging collective knowledge from codebases. Effort and time spent by multiple developers in API migration
tasks are mined from the built repositories. Yet, these approaches also need to explore different solutions to

Page 26 Version 1.3
Confidentiality: Public Distribution

29 June 2019

D2.7 Framework and API Analysis - Final Report

Table 6: Cross-language API migration approaches.
Approach Year Input(s) Output(s) Mappings Assumptions Tool

TMAP [70] 2015 Documentation of
two APIs API migration rules One-to-one • API documentation is available and

complete.
[69]

DeepAM [39] 2017 Bilingual client
codebase API migration rules One-to-one • Source code documentation is valid

and complete.
–

MAM [113] 2010 Migrated client
codebase API migration rules Many-to-many

• There is an already migrated client
codebase.

• Semantics of API entities can be
inferred from names.

• Similarity thresholds are known.

–

StaMiner [62] 2014 Migrated client
codebase API migration rules Many-to-many

• There is an already migrated client
codebase.

• Only methods with similar qualified
names can be mapped.

• Confidence thresholds are known.

–

reach high precision and recall as it is the case in matching-based solutions. They heavily rely on the assumption
of having a stable client codebase with multiple projects migrated to different API versions.

10.2 Cross-language API Migration

Often, programs need to be ported to different programming languages or technological platforms, so they can
reach their target users. This is why cross-language API migration is required. However, this is not a trivial task:
researchers in the field must account for several variables such as the syntactic differences between the involved
programming languages, and semantic differences between equivalent APIs developed by different vendors.
There is a close similarity between the cross-language API migration and the API switching and upgrading
problems. This similarity must be understood in terms of common goals and techniques. Consequently, it is
handy to adopt some of the categories exposed in Section 10.1 to classify existing approaches. We only consider
matching-based and wisdom-of-the-crowd solutions. The record-and-replay category is kept aside, mainly
because of the absence of research responding to the category description. The following sections introduce
some of the existing approaches in both categories. Table 6 and Table 7 show the studied solutions. Publication
year, expected inputs and outputs, type of mappings (i.e., one-to-one, one-to-many, many-to-one, many-to-many,
and API usage), assumptions, and availability of presented tools are also shown per approach.

29 June 2019 Version 1.3
Confidentiality: Public Distribution

Page 27

D2.7 Framework and API Analysis - Final Report

Table 7: Cross-language API migration approaches.
Approach Year Input(s) Output(s) Mappings Assumptions Tool

mppSMT [60] 2015 Migrated client
codebase API migration rules One-to-one

• There is an already migrated client
codebase.

• Migrated programs keep a similar
directory structure and class/method
names.

• Involved programming languages
share the same paradigm.

–

codeSMT [61] 2016 Migrated client
codebase API migration rules One-to-one

• There is an already migrated client
codebase.

• Five (semantic) features are chosen to
describe code context.

• Selected features combination is
sufficient.

–

Nguyen et al. [65] 2016 Migrated client
codebase API migration rules One-to-one

• Context is important when mining
API mappings.

• APIs are frequently use in API
usages.

–

Page 28 Version 1.3
Confidentiality: Public Distribution

29 June 2019

D2.7 Framework and API Analysis - Final Report

10.2.1 Matching-based Approaches

After some of the first matching-based approaches were introduced for solving API switching and upgrading
problems, researchers started to question how they could support API migration in a cross-language environment.
Some of the underlying techniques of matching-based approaches targeting one programming language can be
adopted. Despite the promising results that might be obtained with these techniques, aligning and mapping API
and language entities that are semantically equivalent requires additional information that cannot be inferred by
existing solutions. In this section, we describe some solutions [39, 70] that attempt to reuse matching techniques
by just considering API documentation.

Pandita et al. [70] present TMAP (Text Mining based approach to discover likely API mappings). TMAP
discovers mappings between alternative APIs usually written in different programming languages. The approach
relies on the similarity of natural language of the APIs’ method descriptions. TMAP maps target API descriptions
into a vector space model. Certain text mining challenges such as confounding effects (managing terms that are
too generic), weights (related to the importance of terms), and structure of documents are considered to produce
good quality results. Then, the source API is used to query this model and find all possible mappings between
the two APIs. Queries are automatically generated following text mining techniques. All matching documents
are then retrieved and ranked according to the cosine similarity measure [93]. In the end, the developer accepts
or refuses suggested API mappings. The approach is validated by discovering mappings for 10 classes when
migrating from Java to C# APIs, and 5 classes when migrating from Java ME to Android APIs. Results are
compared against the ones obtained with Rosetta [36] and StaMiner [62]. On average, TMAP finds relevant
mappings for 57% more methods than the referenced solutions. No precision, recall, or performance statistics
are provided.

Gu et al. [39] present a system based on deep learning that supports API migration between Java and C#.
The system is called DeepAM (Deep API Migration). Although DeepAM relies on a client codebase, it is
not classified as a wisdom-of-the-crowd approach. This decision is taken mainly because it does not rely on
migrated projects to detect API mappings. The rationale behind this decision is that only 15 out of 11K studied
projects have a manual translation to C#. However, they do rely on a codebase with projects written in Java and
C# that do not necessarily have a direct translation to the other language. In general, DeepAM extracts API
sequences (i.e., method invocations) per function in the codebase. Each API sequence is related to a description
in natural language taken from the code comments. Then, sequence-to-sequence learning [19] is used to embed
and correlate the set of pairs into a set of fixed-length vectors. These vectors are then translated into their
corresponding description. Related API sequences are identified based on their semantic vectors. Lastly, SMT
is employed to extract the cross-language API mappings between aligned sequences. The authors downloaded
442,928 Java projects and 182,313 C# projects with at least one star from GitHub. In the end, they extracted
a dataset consisting of 9,880,169 API sequence-description pairs. To validate their approach, the authors use
Java2CSharp API mappings as ground truth. The tool has a recall of 82.6% and 82.3% and a precision of 82.7%
and 71.9% for class and method migrations, respectively. DeepAM is also compared against StaMiner [62]
and TMAP [70]. DeepAM outperforms StaMiner in terms of recall and provides a similar precision. Sequence
alignment is shown to be better than the one provided by TMAP.

As it can be seen, cross-language approaches based on matching leverage existing documentation to map API
entities. However, they suffer from strong assumptions regarding the quality and completeness of documentation.
Notwithstanding, these research contributions are worthy for future research, particularly when exploring hybrid
approaches; semantics extracted from natural language can complement the findings derived from source code
and program behaviour.

29 June 2019 Version 1.3
Confidentiality: Public Distribution

Page 29

D2.7 Framework and API Analysis - Final Report

10.2.2 Wisdom-of-the-crowd Approaches

Most of the studied approaches in the subfield of cross-language API migration are classified in the wisdom-
of-the-crowd category. This is mainly due to the hurdle that inferring API and language semantics supposes.
Taking advantage of the collective intelligence and effort made by developers, when migrating programs from
one language to another, seems reasonable and promising. In the remainder of the section, we present some of
the approaches [62, 60, 65, 113] tackling the cross-language API migration problem, while relying on client
codebases where API migration already happened.

The first approach that we consider is this section is MAM (Mining API Mapping) [113]. This approach mines
API mappings between two target languages. MAM follows three phases to mine API mappings. First, it aligns
classes and methods between the two implementations in different languages of an API. To this aim, they rely
on name similarity between the API entities. Second, it mines mappings among API classes by considering
the similarity between classes, fields, and method parameters names. The Levenshtein measure is used for
this purpose. Third, MAM aligns API methods, which given its complexity (e.g., one method in an API could
be mapped to more than one method in the other version), cannot just rely on text similarity. To solve this
problem, MAM builds an API Transformation Graph (ATG) for aligning methods between two projects written
in Java and C#. An ATG is a directed graph that captures information related to method inputs, outputs, and
functionality (inferred from the method name). To validate the approach, MAM considers 15 open source
projects written in both Java and C#. From the evaluation, authors show that MAM is able to mine 25,805 API
mappings, with an accuracy of more than 80%. They also compare the set of mined mappings against the ones
written for the Java2CSharp tool, which are used as oracle. They show a precision of 68.8% and 84.6%, and a
recall of 77.9% and 73.9% for class and method relations, respectively. During the evaluation they discover new
mappings that were not part of the chosen oracle.

Nguyen et al. [62] design StaMiner, a data-driven approach that mines mappings between APIs written in Java
and C#, using a corpus of client projects written in both languages. They focus on the identification of API
usage mappings, meaning that they can map code snippets with more than one line of code. StaMiner creates a
Groum [66] per method in a client project (cf. Diff-CatchUp [63]). As an important remark, labels assigned
to nodes in the Groum graph are created from the names of involved classes, methods, and control structures.
StaMiner extracts sub-Groums in the method’s graph, and then creates a sequence of symbols based on the
label of each node (i.e., usage symbols). Sub-Groums are selected based on the number of involved variables to
avoid exponential complexity. Afterwards, all sequences are put together to create the sentence of the method.
These sentences are used in the symbol-to-symbol alignment algorithm, which uses Expectation-Maximization
(EM) [48]. Finally, aligned symbols with an alignment score greater than a given threshold, are selected as API
mappings. To build the client projects corpus, StaMiner considers nine open source projects written in both Java
and C#. After performing an empirical evaluation, StaMiner shows an accuracy of 87.1% when mining API
usages. Moreover, it outperforms MAM [113], having a relative improvement of 17.1% and 28.6% in precision
and recall, respectively.

Nguyen et al. [60] also introduce a technique to support cross-language API migration, but this time using
phrase-based Statistical Machine Translation (SMT) in three phases. The approach is called mppSMT (multi-
phase, phrase-based SMT). SMT is a paradigm that supports the translation among languages based on statistical
models created from a codebase [48]. The overall approach works in the following way. First, syntactic units
are extracted from source code by traversing the program’s Abstract Syntax Tree (AST). These units are then
represented as syntactic symbols (aka. syntaxemes) and are put together in a sequence. SMT is used to align
syntaxeme sequences between two target languages (e.g., Java and C#). Second, mppSMT processes lexical
tokens within identified syntactic units. Each lexical token is annotated with its corresponding token and data
type (aka. sememe). Third, lexical tokens are aligned between the target languages with SMT (aka. lexeme). In

Page 30 Version 1.3
Confidentiality: Public Distribution

29 June 2019

D2.7 Framework and API Analysis - Final Report

the case of deep and complex syntactic structures (e.g., inner classes), mppSMT uses placeholders (a type of
syntaxeme) to produce an independent alignment. For the migration process, syntaxeme sequences are migrated
first, then sememe sequences, and finally lexical tokens. To evaluate the accuracy of mppSMT, the authors
considered nine open source projects written in Java and then manually ported to C#. The evaluation of the
approach shows that between 84.8% and 97.9% of the migrated methods are syntactically correct, and between
70% and 83% are semantically correct. Results were also compared against Java2CSharp tool, showing that
mppSMT outperforms it in terms of semantic accuracy.

To improve mppSMT and semantic correctness in its derived results, Nguyen et al. [61] present codeSMT.
The authors want to know if incorporating tokens context in the phrase-based SMT approach can improve its
accuracy. To this aim, they study a subset of semantic relations surrounding code tokens, namely: co-occurrence
association, data and control dependencies, visibility constraints, consistency among declarations, and entities
accesses (similar to lexical cohesion). These features are integrated into the SMT process using the Direct
Maximum Entropy (DME) approach. To test the impact of this approach, they consider eight open source
projects written both in Java and C#. Afterwards, they conduct a first experiment where each feature is applied
in isolation. As main result, they observe that co-occurrence association and data-control dependencies generate
an improvement in semantic correctness of 18.3% and 18.5%, respectively. Then, they perform a second
experiment where multiple features are applied at the same time. The authors detect that the combination of co-
occurrence association, data-control dependencies, and visibility constraints causes an improvement of 19.1%
and 26.4% in syntactic and semantic correctness. They conclude that considering code tokens context in SMT
approaches does improve results accuracy.

After using a SMT-based approach, Nguyen et al. [65] introduce a statistical approach to mine API mappings.
This approach uses Word2Vec vector representation [57] to characterize an API element based on its context or
co-occurrence relations (aka. usage relations). Moreover, it aims at identifying similar structures in different
APIs that reveal similar roles related to API elements. Similar geometrical arrangements between two APIs
in the vector space show similar functionality and usage relations. Then, while considering a transformation
method we can learn the projections between two different vector spaces (e.g., Java and C#). To test the
approach, the authors considered an existing dataset of Java projects [11] and they downloaded 7,724 C#
projects with +10 stars from GitHub. The main purpose corresponds to create a Word2Vec model for the JDK
and .NET APIs. They also use Java2CSharp as an oracle do identify their approach accuracy. The approach
derives correct API mappings in 42.8% of the cases when considering top-one suggestions, and up to 73.2% of
the cases when considering top-five suggestions.

In addition to approaches directly tackling the cross-language API migration problem, other researchers have
started to study factors that can improve existing solutions. For instance, Zhong et al. [112] study behavioural
differences between equivalent APIs written in different programming languages. They highlight eight findings
that should be taken into account when building migration tools. First, methods from different APIs handle null
inputs in different ways. Second, string values may be constructed in a different way. Third, equivalent methods
can have different input domains, so minimum and maximum values of target data types should be taken into
account. Fourth, there are differences on the implementation and interpretation of a feature or functionality.
Fifth, exceptions are handled in a different way. Sixth, constants may have different values. Seventh, there
might be different inheritance hierarchies. Eighth, valid method sequences may become invalid after migration.
All these concerns should be taken into account in future research.

Besides the already identified challenges of wisdom-of-the-crowd approaches (cf. Section 10.1), approaches
designed for cross-language contexts should consider an additional quest: the ability to derive semantic
equivalence among API and programming languages. Furthermore, completely relying on client codebases is a
risky move, especially when there are just a few programs that are ported into different languages. To make it

29 June 2019 Version 1.3
Confidentiality: Public Distribution

Page 31

D2.7 Framework and API Analysis - Final Report

Table 8: Refactoring detection approaches.
Approach Year Input(s) Output(s) Ref. Types 4 Assumptions Tool

RefactoringCrawler [28] 2006 Source code of two
API versions

Log of refactoring
operations 7

• Refactorings have a partial
ordering relation.

• Similarity is computed on
API entity bodies5.

• Similarity thresholds are
known.

[29]

Ref-Finder [76] 2010 Source code of two
API versions

List of refactoring
operations 63

• Refactorings have a partial
ordering relation.

• Similarity thresholds are
known.

[75]

RefDiff [92] 2017 Revisions of two
API versions

List of refactoring
operations 13

• Non-modified source code
is not relevant in the
analysis.

• Similarity thresholds are
known.

[91]

RMiner [100] 2018 Revisions of two
API versions

List of refactoring
operations 15

• Non-modified source code
is not relevant in the
analysis.

• Two elements in two
revisions that share the
same signature represent the
same code entity.

[101]

even more challenging, from this small set we only get information of a small group of APIs. Many questions
remain open in this field, and more research effort is needed to provide useful support to developers.

10.3 Refactoring Detection

Finding a section tackling refactoring detection approaches might seem unnatural to the reader. Yet, we
consider that it is important to have an overview of refactoring detection solutions that have been considered
by the API migration state of the art. Some of the approaches that are mentioned in this section, are actually
considered as part of the development or validation of solutions explored in Section 10.1 and Section 10.2.
Moreover, detection of refactoring operations becomes relevant, especially for solutions that include some sort
of model-differencing technique. It is also important to recall that 80% of API evolution changes are related
to refactoring operations [30]. In the remainder of this section, we present four approaches [28, 76, 92, 100]
used to detect refactorings between two versions of a project. Table 8 keeps track of the mentioned solutions,
gathering information related to their publication year, inputs and outputs, number of detected refactoring types,
assumptions, and availability of the solution as a tool.

Page 32 Version 1.3
Confidentiality: Public Distribution

29 June 2019

D2.7 Framework and API Analysis - Final Report

We first introduce RefactoringCrawler, a tool developed by Dig et al. [28]. RefactoringCrawler detects refactoring
operations between two versions of an API. The main goal of this tool is to produce a log where identified
refactorings are added and can later be replayed in co-evolving client programs (cf. CatchUp! [40]). To deal
with scalability and performance concerns, RefactoringCrawler relies on syntactic and semantic analyses. On
the one hand, syntactic analysis detects changes between API versions. It is based on the Shingles encoding [14],
an information-retrieval technique that generates a fingerprint per text component (e.g., method) and finds
similarities among them. On the other hand, semantic analysis is used to select refactoring candidates obtained
with the syntactic analysis. The former is based on reference graphs that show dependencies among API entities.
The authors also address a set of challenges such as noise introduced when preserving backwards compatibility,
and identification of complex refactorings consisting of more than one operation. Multiple thresholds (w.r.t.
Shingles encoding and text similarity) must be specified by the user. Using three different Java projects, authors
show that RefactoringCrawler achieves a precision that oscillates between 90% and 100%, and a recall between
86% and 100%. To compute this metric, they considered a set of manually identified refactorings as an oracle.

Prete et al. [45, 76] introduce Ref-Finder. This tool identifies refactorings between two versions of a given
program. To detect refactoring operations, Ref-Finder defines a set of template logic rules per refactoring type.
Composite refactorings set other logic rules as pre-requisites. A partial ordering relationship among refactorings
should also be defined. Then, a logic programming engine is employed to detect refactoring occurrences in
source code. Each program version is represented with a set of logic predicates, where code elements (e.g.,
packages, classes), containment relations, and structural dependencies (e.g., method invocation, subtyping) are
specified. Ref-Finder computes the set of added and deleted elements between the two target versions. Some
refactorings are identified based on text similarity using the longest common subsequence algorithm. To identify
cases where a refactoring is applied, the antecedent of each logic rule is used as a query in a facts database where
all changes are stored. Retrieved entities are labelled as refactoring instances. Ref-Finder is tested against two
case studies. The first one considers Fowler’s code examples [35]. In this case study, authors report a precision
of 97% and a recall of 93.7%. The second evaluation considers version-pairs of three open-source Java projects.
In this case, authors report a precision of 74% and a recall of 96% when identifying refactoring operations.

Aiming to provide valuable information during software evolution tasks, Silva et al. [92] introduce RefDiff.
This tool identifies refactoring operations between two project revisions taken from a version control system.
RefDiff considers two phases, that combine static analysis and code similarity techniques. First, a source code
analysis phase builds a factual model representing modified code entities (e.g., classes, methods, fields). Second,
the approach considers a relationship analysis phase where relations between modified entities are found. They
distinguish between matching relations (e.g., entity renaming or moving), and non-matching relations (e.g.,
method extraction). In the case of matching relations, if there is more than one candidate for a given refactoring
operation (e.g., a method could be renamed to two other different methods), then a ranking is applied based
on text similarity; the candidate with the highest similarity is then chosen. To compute this similarity, code is
represented as a bag or multiset of tokens, and the weighted Jaccard coefficient [18] is then calculated. The
detection of non-matching relations is easier because API entity cannot be involved in multiple operations,
then there is no need to solve conflicts. To evaluate the approach, the authors build an oracle consisting of 448
refactorings extracted from seven Java projects. Refactoring operations are artificially introduced in the corpus.
After evaluating the tool, authors claim a precision of 100% and a recall of 87.7%. RefDiff is also compared
against other three refactoring detection tools, namely Refactoring Miner [90], RefactoringCrawler [28], and
Ref-Finder [45]. In this experiment, RefDiff outperforms all the other tools.

The last approach we present in this section is Tsantalis et al. [100] tool, RMiner (Refactoring Miner). This
approach is able to detect 15 refactoring types. RMiner takes as input two revisions of a project (i.e., a commit
and its parent commit from the git-based system), and outputs a list of refactoring operations between the two
versions. It analyses only the delta between the two versions. RMiner aims at solving two state-of-the-art

29 June 2019 Version 1.3
Confidentiality: Public Distribution

Page 33

D2.7 Framework and API Analysis - Final Report

issues: dependence on similarity thresholds and project building for analysis. Most refactoring tools assume
that projects should be fully compiled, but as the authors pointed out, only 37% of the history of software
projects can be successfully build [102]. The target technique uses an AST-based matching algorithm to detect
refactoring candidates. No similarity threshold needs to be specified. Abstraction and argumentization pre-
processing techniques are introduced to match more complex refactoring cases such as inline and extract method.
To test the approach, the authors consider a dataset [90] reviewed by means of using a triangulation technique.
The dataset considers 3,188 refactorings from 185 Java projects downloaded from GitHub. Its precision is of
98% and its recall of 87%. They compare their tool against RefDiff [92]; RMiner outperforms the target tool.

We have seen that refactoring detection approaches have reached important research milestones. This is a
handy situation for researchers working in the API migration, mainly because part of their work can rely on
the aforementioned results. Still, some improvements should be presented to enhance existing solutions. The
number of considered refactoring types can be increased as well as the precision to detect both ordinary and
complex refactoring types.

10.4 Program Transformation Languages

Some practitioners tackle the API migration problem, by manually specifying their own migration rules in a
transformation language that helps automating the process. We consider that it is worthy to mention some of
the existing transformation languages that have been used for that purpose. In fact, we believe that some of
the underlying techniques, design decisions, and even challenges might be taken into consideration by future
research. This section presents four transformation languages [22, 53, 67, 104] that are frequently mentioned in
the state of the art. Considering that API mappings are known and can be specified in each language, is however
the strong assumption underpinning all solutions.

The first programming language that we introduce is TXL (Turing eXtender Language). This language
is presented by Cordy [22] as a programming language that supports rapid prototyping of notations and
features of other programming languages. TXL was introduced in the early 1980’s to avoid rebuilding all the
compiler phases to add lexical, syntactic, semantic, and code generation elements related to new features of the
language. This is achieved by using source-to-source transformations (aka. grammar overriding). The main
idea behind TXL is to define a grammar, some syntactic modifications over it, and then implement a prototype
by transforming the original language according to the defined modifications. In TXL terms, there is a base
grammar, whose non-terminals can be modified by means of using grammar redefinitions. These redefinitions
replace the original non-terminal definitions with a new ones. Developers can also provide pre- and post-
extensions to the previous definition of the non-terminal. Patterns related to these extensions are specified in the
concrete syntax of the target language, following the native patterns directives. TXL supports the definition of
rules, functions, guards, lexical control, and global variables (usually used to represent symbol tables).

More recent and specialized approaches start to appear with Twinning. Nita and Notkin [67] introduce this
language as a way to specify mappings used for migrating programs from a source to a target API. The authors
identify two types of API adaptations. The first type is known as shallow adaptation. In this case, a client
program that uses a source API is modified to directly use a target API. The second adaptation type is known
as deep adaptation. In this context, client programs are modified to use a more abstract interface that has two
different implementations: one pointing to the source API and another pointing to the target API. The authors
claim that the tradeoffs between one and another are similar to the ones found when dealing with duplicated
code and abstraction; the first one is easier to write but hard to maintain and vice versa. In both cases, the
developer that aims to migrate client code needs to specify a one-to-one mapping between code snippets. Each
mapping specifies source (aka. domain) and target (aka. range) return types, list of formals, and bodies. Finally,

Page 34 Version 1.3
Confidentiality: Public Distribution

29 June 2019

D2.7 Framework and API Analysis - Final Report

appearances of the domain body in the program are replaced with the range body specified in the mapping. A
limitation of the approach is that data or control flow is not taken into account when matching the mappings. A
big challenge identified by the authors is to handle exceptions, especially when facing asymmetric mappings
where the source and target bodies handle a different amount of exceptions. To manage this issue, Twinning
allows the overlapping of exception type replacements. Twinning is applied to two case studies (i.e., API
switching from Crimson to Dom4J and from Twitter to Facebook), proving itself useful but limited.

SWIN (Safe tWINning) is the successor of Twinning [67]. It is designed by Li et al. [53] as a transformation
language for migrating Java programs between alternative APIs. SWIN enhances Twinning with more flexible
transformation rules, formal semantics, and the type-safeness guarantee.6 Additionally, SWIN is convergent,
meaning that it only considers terminating and confluent transformations (the order in which transformation
rules are applied matters). To support this, SWIN does not allow the introduction of two transformation rules
with the same source pattern. In SWIN, developers specify a transformation rule set, where each rule has a
set of metavariable declarations, source patterns and target patterns. A metavariable declaration considers the
target and source types of involved variables; a mapping is then defined between the types of source and target
APIs. To guarantee type safety, four conditions must be fulfilled. First, each pattern of a transformation rule
must be well-typed [67]. Second, type mappings must form a function (i.e., one-to-one relation) [67]. Third,
subtyping relations must be preserved. Fourth, transformation rules must cover all API changes. Moreover,
they focus on supporting one-to-many mappings given its frequency in the API migration landscape, and its
importance when thinking on a more general scenario (i.e., many-to-many mappings) [23]. To validate the
language expressiveness, SWIN is used within three case studies (Crimson to Dom4j migration, Twitter4J to
Sina Weibo Java migration, and Google Calendar API upgrading). The authors wrote 94 migration rules for the
three scenarios, covering 97% of the methods that needed a transformation. They face problems when dealing
with API entities splitting.

Lastly, Wang et al. [104] introduce PATL (PAtch-like Transformation Language). As in the case of SWIN [53],
PATL is a declarative program transformation language that supports migration of Java projects between APIs.
This language is part of a migration approach that considers many-to-many mappings, def-use relations preser-
vation, and program normalization. This guided-normalization solution aims at changing (aka. normalizing)
programs to a semantically equivalent basic form. Thus, this is the only program that developers should take
into account when writing transformation rules. The solution also performs a set of semantics-preserving trans-
formations (e.g., alias renaming, swapping) until a syntactic substitution is made to support the migration. In
addition, a static checker is provided to preserve def-use relations. In PATL, developers specify a transformation
rule sequence, where each rule has a set of metavariable declarations, source patterns, and target patterns. The
authors apply their approach to three case studies (i.e., updating Google Calendar API, migration from JDom to
Dom4j, and migration from Swing to SWT). To check the correctness of the transformation, they consider func-
tional and performance tests, exceptions, and functional behaviour of the original and transformed program. In
the end, they write 236 rules to cover 66 classes and 204 methods included in the case studies. 97.3% of target
lines are successfully transformed with PATL, the rest require manual resolution.

The abovementioned approaches support the automatic migration of client programs when API mappings are
known. These solutions can be combined with approaches presented in previous subsections, so a complete and
practical system can be handed in to developers.

6The type-safety property implies both correctness (all transformed pieces in the code are well-typed), and completeness
(unchanged sections are still well-typed after API migration).

29 June 2019 Version 1.3
Confidentiality: Public Distribution

Page 35

D2.7 Framework and API Analysis - Final Report

10.5 Discussion

We have considered approaches that contribute to the API switching and upgrading problem, the cross-language
API migration problem, the refactoring detection problem, and the program transformation problem. In the
first two cases, we identify studies pertaining to three main categories: record-and-replay, matching-based, and
wisdom-of-the-crowd approaches. The main advantage of record-and-replay approaches is that they reach a
high precision when migrating APIs. This is mainly due to the storage and reuse of changes performed by
developers during manual migrations. However, the presence of manually migrated code is a strong assumption
that supposes significant effort from developers. Other drawbacks of these approaches are the dependence on the
underlying IDE and the need of including additional resources in the packed API, which affects the portability
of solutions.

Aware of the challenges faced by record-and-replay studies, researchers consider alternatives that focus on
automated API analysis (matching-based approaches) and client codebases where manual migrations have
been performed (wisdom-of-the-crowd approaches). In both cases, the idea of relying on developers’ IDEs is
discarded. Instead, matching-based approaches only consider the target APIs code to identify mappings. This
removes the need for existing client codebases, and requires instead ad-hoc heuristics and source code analysis
and comparison techniques. Wisdom-of-the-crowd approaches, on the other hand, require a large codebase of
client code for a given API, which might not exist in all cases. Heuristics and code or text comparison methods
are also used within these studies. In both cases, the goal is to reach high precision and recall by tweaking
the heuristics, thresholds, and source code comparison techniques. Moreover, the evaluation and validation of
the derived API mappings is rarely addessed by the aforementioned approaches. Identifying differences when
analyzing source code and bytecode, as well as identifying non-trivial changes related to certain programming
styles such as Inversion of Control (IoC) are still open research topics.

Concerning refactoring detection approaches, researchers have presented promising solutions where several
refactoring types are identified. Well-defined conditions to spot certain refactorings are included in the current
state of the art. Nevertheless, not all refactoring types as reported by Fowler [35] are considered by these
studies. Identification of nested refactorings is also a complex task. Lastly, in regards to program transformation
languages, some languages support the migration of client code to support a new API while preserving semantics
and guaranteeing type-safeness. These studies are useful once API mappings are identified, so they can be
included as part of the migration process.

So far, we discern the need to integrate capabilities offered by API migration, refactoring detection, and program
transformation approaches to provide functional tools that help developers during API evolution and client code
migration. Specifically, researchers must address corner cases such as supporting migration when facing APIs
with certain programming patterns or styles (e.g., IoC). Many client projects do not have access to the source
code of the APIs they use. Instead, they rely on JARs directly or through dependency management systems such
as Apache Maven and OSGi. This requires inferring API mappings not only from source code as it is usually
done, but also from bytecode.

To address these concerns, we introduce in the next section MARACAS, the framework for API analysis and
migration that we develop in the context of CROSSMINER.

11 MARACAS: A Framework for API Analysis and Migration

MARACAS is a framework written in Rascal that aims at supporting automatic migration of Java client code
following changes in Java APIs. Essentially, MARACAS can be classified as am API upgrading approach. That
is, it tackles the API-client co-evolution problem by supporting developers of client projects in API migration

Page 36 Version 1.3
Confidentiality: Public Distribution

29 June 2019

D2.7 Framework and API Analysis - Final Report

processes. It also incorporates theories and approaches coming from related fields such as refactoring detection
and program transformation. This allows the construction of more holistic and practical tools when migrating
code due to API evolution. Roughly, the MARACAS framework supports the following tasks: (i) identify both
breaking and non-breaking changes between two versions of a Java API from both either its source code or its
bytecode; (ii) generate mappings from one version to the other; (ii) detect affected Java source code in client
projects; and (iv) evaluate if the suggested API mappings are considered in already migrated client projects.

The problem of automatically migrating the client code to comply with the updated version of an API is not
addressed in this document. We refer the reader to the companion deliverables of WP3 and WP6 for more
information on how the information computed by MARACAS is then used by other tools to recommend actual
code snippets and documentation supporting the migration of client code.

Hereafter, we present MARACAS as a standalone framework and tool. The current version of MARACAS is
hosted at https://github.com/crossminer/maracas under the CROSSMINER organization umbrella
on GitHub. MARACAS is also integrated into CROSSMINER. Details about this integration are presented
in D2.8 – API Analysis Components. For further information regarding API migration assitance, refer to
deliverables D3.5 – Mining Documentation and Code Snippets and D6.5 – The CROSSMINER knowledge
base – Final Report.

11.1 API-client Co-evolution

In this section, we first introduce a motivating example to better understand the API-client co-evolution problem
(cf. Section 11.1.1). We use this motivating example to illustrate the problem of API evolution and migration (cf.
Section 11.1.2). We end this section by presenting a high-level overview of our approach (cf. Section 11.1.3).

11.1.1 Motivating Example

We consider a simple Java API, APIv1, depicted in Listing 2, consisting of a single class FileManager which
exposes a single method fileExists(String). Later, as depicted in Listing 3, this API evolves into APIv2
and the method fileExists(String) is renamed to isFile(String).

package api;

public class FileManager {
public boolean fileExists(String path) {

return ... ;
}

}

Listing 2: FileManager APIv1.

package api;

public class FileManager {
public boolean isFile(String path) {

return ... ;
}

}

Listing 3: FileManager APIv2.

Now, let us consider a client project that is currently using APIv1. As depicted in Listing 4, the Client class
creates a FileManager object (Line 7) and directly invokes the fileExists method (Line 8) declared in
APIv1. The client project developers then decide to upgrade their dependencies, migrating from APIv1 to APIv2.
Afterwards, the client code does not compile anymore. When facing this small and highly scoped scenario
a manual migration is trivial. However, when facing tens or hundreds of API modifications, changes might
become untraceable. The lack of awareness of the API modifications might also result in a new layer of com-
plexity when migrating client code. This is especially evident when trying to identify the proper replacement of

29 June 2019 Version 1.3
Confidentiality: Public Distribution

Page 37

https://github.com/crossminer/maracas

D2.7 Framework and API Analysis - Final Report

a given API member, like is the case in our renamed method scenario.

1 package client;
2
3 import api.FileManager;
4
5 public class Client {
6 public void foo() {
7 FileManager fm = new FileManager();
8 boolean exists = fm.fileExists("/etc/passwd");
9 }

10 }
11

Listing 4: Client code using the FileManager APIv1.

11.1.2 Problem Description

As stated by Lehman [50], the need for change is intrinsic to any software artefact. This property leads to what
we currently know as software evolution; a phenomenon that implies a set of continual progressive changes
in a set of software attributes [51]. These changes appear as a direct consequence of a changing environment.
Software artefacts need then to adapt so they can deliver their expected value, while keeping or even improving
their quality [51]. Considering our motivating example, we can observe that the evolution of APIs used by client
code supposes the evolution of the client software itself. Of course, this is true just only when the client project
needs to leverage security patches, features, and other improvements introduced in the newer version of the API.
This problem is accurately defined as the API upgrading or API-client co-evolution problem.

Figure 12 presents an overview of the API-client co-evolution problem. This scenario shows a client project
Clientv1 that uses APIv1. As time passes, the API evolves into APIv2. At some point, developers of the client
code identify their own need to evolve so they can benefit from the new or modified features included in APIv2.
Their main goal is then to migrate from Clientv1 to Clientv2, the latter using APIv2 (see grey area in the figure).
Nevertheless, this migration process might result in a cumbersome task depending on the number and complexity
of the changes introduced in the API. What are the changes introduced in the API? Which features have been
removed? Are there planned replacements to these removed declarations? What changes can break the client
code? What changes do not break the client code but can be tackled in a proactive way? These are some of the
questions that developers relying on an evolving API are faced with.

Our main concern within the CROSSMINER project is to detect API changes and possible replacements of
removed declarations. This actionable information is then provided to developers of client projects, so they are
actively supported during their own migration process.

11.1.3 Approach Overview

To tackle the API-client co-evolution problem, we borrow some ideas related to models co-evolution from the
Model-Driven Engineering (MDE) field.

MDE is a software methodology that treats models as first-class citizens, changing the focus from code to
models that capture the underlying domain concepts. The main idea behind MDE consists in extracting and
representing domain concepts and the relationships between them as metamodels. Instances of these metamodels

Page 38 Version 1.3
Confidentiality: Public Distribution

29 June 2019

D2.7 Framework and API Analysis - Final Report

Clientv1

APIv1 APIv2

Clientv2
migrate

upgrade

usesuses

Figure 12: API-client co-evolution problem.

are then represented as models which are artefacts that conform to the corresponding metamodel. Constraints
specified at the meta-level must be satisfied during the instantiation process [18].

As software artefacts themselves, models are also amenable to change. That is why recent approaches have
aimed to support the evolution of metamodels and their instance models [20]. This process is known as
models co-evolution or co-adaptation. Given two versions of an evolved metamodel, a difference model that
captures all introduced changes is computed automatically. In the case of Cicchetti et al. [20], both breaking
changes (changes that break the conformance of models) and non-breaking changes (changes that do not
break the conformance of models) are identified. Afterwards, higher-order transformations generate model
transformations composed of co-evolution actions that migrate the affected models.

To better understand and analyse the existing relations among elements in the API-client co-evolution problem
(i.e., uses, upgrade, migrate), we aim at modelling them. Intuitively, if we consider a program as a model that
represents a domain or universe of discourse [50], the application of MDE terminology in program evolution is
straightforward. Therefore, we borrow some of the MDE ideas for API-client co-evolution problem. Figure 13
gives an overview of the artefacts and phases that must be considered in a typical API migration scenario. The
main artefacts in the figure are introduced below:

API Projects. API projects (denoted APIvX in Figure 13) are software projects that expose a public API meant
to be used by client projects. The public API of such projects is the set of access points it exposes,
e.g., the set of public classes, fields, and methods in a Java project that are accessible from the outside;

Client projects. Client projects (denoted ClientvX in Figure 13) are users of API projects. They contain code
that invokes part of the public API of an API project (its access points);

Usage model
(

1
)
. A usage model describes which part of a library’s public API is being used in a client

project. More specifically, it pinpoints both which access points of the API project are used in the client
project, and which portion of the client project uses which access points;

∆-model
(

2
)
. A ∆-model specifies which parts of the API have changed in between two target versions,

including breaking and non-breaking changes. Thus, modifiers modifications of API access points,
changes in types and list of parameters, added and removed superclasses and interfaces, as well as
renamed, moved, and deprecated API members should be reported within the model;

29 June 2019 Version 1.3
Confidentiality: Public Distribution

Page 39

D2.7 Framework and API Analysis - Final Report

Clientv1

APIv1 APIv2

Clientv2
migrate

upgrade

usesuses

Δ-Model

1 Usage
Model

2

4

3

Detection
Model

Figure 13: API-cliento co-evolution process and artefacts.

Detection model
(

3
)
. A detection model pinpoints which locations in a client project identified by a usage

model are affected by the changes reported in a ∆-model; put another way, it detects which parts of client
code are affected by the API evolution and must thus be migrated;

Migration
(

4
)
. Finally, the migration phase uses information extracted in the usage model, ∆-model, and

detection model to (i) formulate recommendations regarding the migration of the locations in the client
code affected by changes in the API and, whenever possible, (ii) automatically migrate these affected
locations by patching the code.

Support for API migration can be classified in three ascending degrees of support and automation:

1. Detection. Enumerating the list of API uses in a client project which have to be migrated to comply with the
updated version of an API;

2. Assistance. Providing developers with information extracted from heterogeneous sources (Q&A websites,
forums, bugtrackers, commits, etc.) to assist them in the manual migration of their code base;

3. Migration. Automatically migrating the code base from version n of the API to version n+ 1.

MARACAS is the backbone of API migration and analysis support in CROSSMINER. This framework
supports the detection phase within the API migration process. Other partners in the project provide useful
recommendations based on analysing textual sources related to OSS (cf. D3.5 – Mining Documentation and
Code Snippets) and client codebases (cf. D6.5 – The CROSSMINER knowledge base – Final Report).
These approaches cover the assistance phase of the migration process. The migration phase is out of scope for
this project.

Page 40 Version 1.3
Confidentiality: Public Distribution

29 June 2019

D2.7 Framework and API Analysis - Final Report

11.2 MARACAS Architecture

MARACAS is a tool and framework intended to support developers during the migration of a client project to a
newer version of a given API. In other words, MARACAS is meant to support the API-client co-evolution as
described in Section 11.1. Our approach is fully implemented in Rascal, a functional programming language
that supports code analysis, transformation, and generation [47]. Aligned with the approach overview presented
in Section 11.1.3, software artefacts are manipulated as M3 models [13] which are automatically extracted
from Java bytecode or source code with Rascal. A M3 model captures language-agnostic and Java-specific
facts from a project (cf. Usage model in Section 11.2.1). MARACAS specifies a set of different models that
similarly captures the information required during model evolution scenarios. These models are implemented as
Algebraic Data Types (ADTs), and different components are included in MARACAS’ architecture to manage
the corresponding models. The migration process is still opened to extension. In particular, this allows us to
experiment with other tools of the literature (cf. Section 10) to evaluate their factual strengths and shortcomings.

We introduce the main models and corresponding ADTs that support our API-client co-evolution approach (cf.
Section 11.2.1); as well as the main architectural components of our MARACAS framework (cf. Section 11.2.2).
At the end of the section we also revisit our motivating example (cf. Section 11.2.3).

11.2.1 Models

In this section we introduce the main models of our API-client co-evolution approach (cf. Section 11.1).

Usage model
A Usage model specifies which parts of an API is used in a given client project. In our approach, Usage models
are M3 models which describe facts about source code in the form of a set of relations between source code
locations.

Listing 5 presents the M3 data type implementing the M3 model. All elements within the M3 datatype are
relations, except for the messages attribute, which stores error and warning messages produced during the
construction of the model. Some of these relations are language agnostic, specifically the first six relations,
namely declarations, types, uses, containment, names, and documentation. The remainder are Java-
specific relations storing information regarding extends, implements, methodInvocation, fieldAccess,
typeDependency, methodOverrides, and annotations. Details on the semantics of each relation are presented
by Basten et al. [13].

The main idea behind Usage models is to gather all tuples from the client M3 models which use one or more
API members. To get the corresponding information we consider the typeDependency, methodInvocation,
fieldAccess, implements, extends, and annotations relations from the client M3 model. Then we check if
API members appear in the range (i.e., the right-hand side) of the abovementioned relations. That is, we cross-
check the corresponding ranges against the set of API members that constitute the domain of the declarations
relation in the M3 model of the considered API. As of now, MARACAS considers fields, methods, construc-
tors, classes, interfaces, and enumerations as API members. These elements can be identified by checking the
scheme of the corresponding logical location: java+field, java+method, java+constructor, java+class,
java+interface, and java+enum, respectively.

data M3 (
rel[loc name, loc src] declarations = {},
rel[loc name, TypeSymbol typ] types = {},

29 June 2019 Version 1.3
Confidentiality: Public Distribution

Page 41

D2.7 Framework and API Analysis - Final Report

rel[loc src, loc name] uses = {},
rel[loc from, loc to] containment = {},
list[Message] messages = [],
rel[str simpleName, loc qualifiedName] names = {},
rel[loc definition, loc comments] documentation = {},
rel[loc definition, Modifier modifier] modifiers = {},
rel[loc from, loc to] extends = {},
rel[loc from, loc to] implements = {},
rel[loc from, loc to] methodInvocation = {},
rel[loc from, loc to] fieldAccess = {},
rel[loc from, loc to] typeDependency = {},
rel[loc from, loc to] methodOverrides = {},
rel[loc declaration, loc annotation] annotations = {})
= m3 (loc id);

Listing 5: M3 data type.

∆-model
Listing 6 depicts the Delta datatype that implements our notion of ∆-model. This model stores all API changes,
including breaking and non-breaking changes. A filtering feature is provided to retrieve only API breaking
modifications (cf. D2.8 – API Analysis Components). In essence, the model has one constructor delta(tuple
[loc from, loc to] id), which receives an id pointing to the physical location of the old and new versions
of the analysed API. To capture API evolution information, we define a group of relations of type rel[loc

elem, Mapping[&T] mapping]. Mapping[&T] is an alias for a tuple that has an original element from of type
&T, a modified element to of the same type &T that maps to the former, a confidence score conf, and a similarity
method or function method. The confidence score and similarity function are of particular interest when MARA-
CAS faces mappings that cannot be directly derived from the bytecode or source code. Instead, a comparison
between code snippets should be performed to infer possible replacements in the code base. For this purpose,
we use similarity and distance metrics such as Levenshtein [52] and Jaccard [43], and plan to implement the
GumTree algorithm [31] in the future. MARACAS uses these similarity methods to compute renamed, moved,
and deprecated API mappings.

data Delta (
rel[loc elem, Mapping[Modifier] mapping] accessModifiers = {},
rel[loc elem, Mapping[Modifier] mapping] finalModifiers = {},
rel[loc elem, Mapping[Modifier] mapping] staticModifiers = {},
rel[loc elem, Mapping[Modifier] mapping] abstractModifiers = {},
rel[loc elem, Mapping[list[TypeSymbol]] mapping] paramLists = {},
rel[loc elem, Mapping[TypeSymbol] mapping] types = {},
rel[loc elem, Mapping[loc] mapping] extends = {},
rel[loc elem, Mapping[set[loc]] mapping] implements = {},
rel[loc elem, Mapping[loc] mapping] deprecated = {},
rel[loc elem, Mapping[loc] mapping] renamed = {},
rel[loc elem, Mapping[loc] mapping] moved = {},
rel[loc elem, Mapping[loc] mapping] removed = {},
rel[loc elem, Mapping[loc] mapping] added = {})
= delta (tuple[loc from, loc to] id);

alias Mapping[&T]
= tuple[

Page 42 Version 1.3
Confidentiality: Public Distribution

29 June 2019

D2.7 Framework and API Analysis - Final Report

&T from,
&T to,
real conf,
str method

];

Listing 6: Delta data type.

Each relation within the Delta datatype represents a certain type of modification in the API evolution.
Changes to access, final, static, and abstract modifiers are stored in the accessModifiers, finalModifiers,
staticModifiers, and abstractModifiers relations, respectively. In all these cases, the mapping considers
two elements of type Modifier7 where we specify the initial modifier of the member and its new modifier. For
instance, a method can undertake a change from public to private, or from static to non-static.

Changes in the parameter list of method members or the type of both methods and fields are registered in
the paramLists and types relations, respectively. The mappings of both relations rely on the TypeSymbol

datatype.8 In the case of the paramLists relation, the mapping considers a list of type symbols, each one
representing the type of a method parameter in the corresponding position. In the case of the types relation, the
mapping stores the return type and type of both methods and fields.

Concerning classes, we represent class extension and interface implementation through the extends and
implements relations. The extends mappings only consider replacements from one type to another, since Java
does not support multi-inheritance. Contrary to the former case, the implements mappings consider sets of
interfaces, which is important if the client extends types from the API.

Similarity functions and data representations mentioned in Section 11.2.2 are of great importance when building
the deprecated, renamed, and moved relations. Mappings stored in these relations refer to origin and target
locations that, once again, are the unique identifier of an API member. An overlap between the deprecated

and the renamed and moved relations can be seen if new API elements have a high resemblance with both
deprecated and renamed or moved members. This overlap is materialized as a set of new API elements appearing
in different relation as target API members. Moreover, there might be multiple tuples suggesting different
mappings for a same element. This happens due to the use of different similarity functions in a same round of
computations, or because multiple elements have a similiarity score above the underlying similarity threshold.
We keep this overlap so developers of client projects can use their own criteria to decide which mapping suits
them best.

Finally, the renamed and added relations report all the removed and added declarations between the two versions
of the API. It is expected that many of the domain elements of these relations appear as origin or target members
in mappings of the previously described relations.

Detection model
Listing 7 presents the implementation of the Detection model in Rascal. The model has one constructor,
namely detection(loc elem, loc used, Mapping[&T] mapping, DeltaType typ). This model consid-
ers a client member elem that is currently using an old version of an API member. This old member is
represented with the logical location used. The model also keeps a copy of the mapping identified during the
construction of the ∆-model to provide more information to the developer during the detection phase. Ad-
ditionally, given that the type of change is of clear importance, we add a typ attribute that specifies if the

7The Modifier data type is declared within the Rascal library as part of the M3 AST module.
8The TypeSymbol data type is declared in the M3 TypeSymbol module of the Rascal library.

29 June 2019 Version 1.3
Confidentiality: Public Distribution

Page 43

D2.7 Framework and API Analysis - Final Report

developer is addressing a change in access modifiers, final modifiers, static modifiers, etc. The typ attribute con-
siders each of the relations presented in the ∆-model through a type definition in the DeltaType data type (e.g.,
accessModifiers(), implements(), renamed()).

Even though the ∆-model captures all changes within an API (including internal changes that are not meant to
be accessed by client code), we only detect changes of the public API. However, we distinguish between the so-
called factual API and the intended API. A factual API is the list of API members that are actually being used
by a set of clients. In contrast, an intended API is the set of all API members that were planned to serve as API
access points by the API developers. In the case of the Detection model, we identify the factual API used by
one client. Due to these definitions, it is expected that the factual API inferred by detection models identify a
subset of the elements intended to be exposed by developers in the intended API. This information might be
valuable to API developers, so they can have a sense of the impact of certain API changes. They can also know
which parts of the API are not being used and might not deserve more maintenance, and to which extent the
API is used according to their design.

data Detection = detection (
loc elem,
loc used,
Mapping[&T] mapping,
DeltaType typ

);

data DeltaType
= accessModifiers()
| finalModifiers()
| staticModifiers()
| abstractModifiers()
| paramLists()
| types()
| extends()
| implements()
| deprecated()
| renamed()
| moved()
| removed()
;

Listing 7: Detection model data type.

Migration model
Listing 8 shows the datatype definition of the Migration model. As mentioned above, the Migration model
considers two versions of a client’s source code: before the manual migration, and after the manual migration.
The Migration model has only one constructor migration(loc oldClient, loc newClient, Detection d

), which receives the physical location of the old and new versions of the client code and the Detection model
related to the target API. First of all, the model stores the oldDecl and newDecl attributes, which point to the
logical location of a member declaration within the old and new client code, respectively. This helps us to
highlight the declaration of the client code that has been affected by an API change, as well as the corresponding
declaration on the migrated client code that has been manually migrated by developers. The oldUsed and
newUsed attributes are pointers to the API member that was previously being used by the client, and its expected
new version.

Page 44 Version 1.3
Confidentiality: Public Distribution

29 June 2019

D2.7 Framework and API Analysis - Final Report

Lastly, the oldUses and newUses sets are employed to gather all the API elements used within the oldDecl and
newDecl client declarations. This data can be used to cross-check the mappings inferred by MARACAS in ∆-
models with what the developers have done to migrate their code manually. For instance, if a ∆-model specifies
that the method a1 has been renamed to a2, we expect the Migration model to contain a1 as part of the oldUses
relation, and a2 as part of the newUses relation. This enables us to check whether the developers’ work matches
what has been inferred by MARACAS.

data Migration (
loc oldDecl = |unknown:///|,
loc newDecl = |unknown:///|,
loc oldUsed = |unknown:///|,
loc newUsed = |unknown:///|,
set[loc] oldUses = {},
set[loc] newUses = {})
= migration (loc oldClient, loc newClient, Detection d);

Listing 8: Migration model data type.

11.2.2 Components

The MARACAS framework comprises seven different components. Figure 14 depicts the architecture of
MARACAS, showing its main components and the data dependencies between them. These components are in
charge of creating, managing, or visualizing the API-client co-evolution models used within MARACAS (cf.
Section 11.2.1). We dive into each one of these components, explaining what their inputs and outputs are, as
well as their interaction with other parts of the architecture.

API. The API component is the main access point to MARACAS features. All public features are declared
within this component. The main responsibility of the component is to support the interaction with the
DeltaBuilder, DetectionBuilder, and MigrationBuilder components. That is, the API is respon-
sible of orchestrating the computation of and retrieving the ∆-model, the Detection model, and the
Migration model required by an end user. This functionality is declared in the delta(loc oldAPI,

loc newAPI), detections(loc oldClient, Delta delta), and migrations(loc newClient, set

[Detection] detections) functions. Moreover, to support the analysis of changes based on the type
of API affected members, we provide a Delta filtering functionality. This feature is reachable through
the classDelta(Delta delta), methodDelta(Delta delta), and fieldDelta(Delta delta) func-
tions, which–as their names suggest–retrieve a Delta model restricted to class or interface, method, and
field members, respectively.

Delta builder. The Delta Builder component is one of the core components in MARACAS. It is responsible of
creating a ∆-model between two versions of an API, given two M3 models representing both versions of
the library. To do so, the component interacts with the M3DiffBuilder and the Matcher components.
The former is responsible of retrieving a M3Diff model that captures the differences (both additions
and removals) of the input M3 models. The latter is in charge of creating a set of mappings to identify
possible replacements of removed API members (e.g., identifying renamed or moved methods).

M3Diff builder. The M3Diff builder component is in charge of computing differences between two input M3

models. It inspects each relation of the input values to identify both added and removed tuples. To this
aim, it computes the set difference for each M3 relation. Let O and N be two relations of the M3 models
representing the old and new API version, respectively. Both of them contain the same M3 relations

29 June 2019 Version 1.3
Confidentiality: Public Distribution

Page 45

D2.7 Framework and API Analysis - Final Report

DeltaBuilder DetectionBuilder MigrationBuilder

API

M3DiffBuilder Matcher

M
3 A

P
I-

v1

M
3 A

P
I-

v2 M
3D

iff M
3D

iff

set [M
appin

g]

M
3 A

P
I-

v1

M
3 A

P
I-

v2 Δ
-M

od
el

Δ
-M

od
el

set [D
etection]

se
t [

D
et

ec
tio

n] set [M
igratio

n]

Visualizer

M
3 C

lie
nt

-v
1

set [D
etection]

set [M
igratio

n]

Δ-Model

M
3 C

lie
nt

-v
2

Figure 14: Maracas architecture.

in their corresponding models (e.g., methodInvocation). To compute the set of newly added tuples
we compute the set difference N − O; to identify removed tuples we use the set difference O − N .
Additionally, the component computes the sets of newly introduced and removed declarations according
to each member unique logical location. The resulting M3Diff is the baseline for populating the whole
∆-model between the two versions of the target API.

Matcher. The Matcher component is mainly used to compute the deprecated, renamed, and moved ∆-model
relations. Its main input is a M3Diff that specifies the members that must be compared and possibly
matched. A similarity function and data representation are specified aside. This design is aligned with
software similarity and classification theory. In order to compare two snippets of code, developers need
to select a data representation (e.g., text, vectors, sets, graphs), and then a similarity function that operates
on the chosen data type (e.g., Levenshtein on text, or Jaccard on sets) [16]. Therefore, plugging in various
matchers that build on MARACAS infrastructure is pretty straightforward. End users can then specify
their preferred similarity function and threshold (if any) within a configuration file parsed by MARACAS

at run time.

Detection builder. The Detection builder component takes the M3 model of the client code that needs to be
migrated, as well as the ∆-model generated by the DeltaBuilder. The computed Detection model
identifies the declarations within the client code that are affected by the API evolution stored in the ∆-
model. We consider field access, method invocation, class subtyping, interface implementation, and
annotation use as the main ways of accessing an API.

Migration builder. The Migration builder component is used to identify the real changes that a client underwent
after manually migrating to the newer version of the target API. This model is needed to verify to which

Page 46 Version 1.3
Confidentiality: Public Distribution

29 June 2019

D2.7 Framework and API Analysis - Final Report

extent a client follows the mapping suggestions computed by MARACAS in the ∆-model, and also to
validate the correctness of the tool. In other words, the Migration model is helpful to both analyse
existing migrations and validate the ∆-model data. In any case, it always serves as a feedback model to
improve the accuracy and correctness of the tool.

Visualizer. The visualization of models computed by the aforementioned components is provided by the Visu-
alizer component. This visualization support is included within MARACAS to further assist developers
during their code migration. This goal is achieved by showing the ∆-models, Detection models, and
Migration models in a user-friendly HTML-based interface. In the case of ∆-models, we display the
content of each relation in independent HTML tables. Each table shows the logical location of the API
member that was modified as well as its corresponding mapping, which considers the original and modi-
fied element, mapping score (in the case of deprecated, renamed, and moved relations), and similarity
function if any (e.g., Levensthein, Jaccard).

11.2.3 Revisiting our Motivating Example

In this section, we describe the models inferred by MARACAS on our motivating example (cf. Section 11.1.1).
As already mentioned, the function delta takes as input pointers to the old (cf.|file:///home/ ...
/FileManagerv1|) and new (cf.|file:///home/ ... /FileManagerv2|) versions of the source code
of the API and produces the corresponding ∆-model. Functions classDelta, methodDelta, and fieldDelta

are offered to filter the derived ∆-model according to the corresponding API member type. In this example, we
are interested in the methodDelta output. which is depicted in Listing 9.

1 Delta: delta(
2 <

3 |file:///home/ ... /FileManagerv1|,

4 |file:///home/ ... /FileManagerv2|
5 >,
6 removed={ <
7 |java+method:///api/FileManager/fileExists(java.lang.String)|,
8 <
9 |java+method:///api/FileManager/fileExists(java.lang.String)|,

10 |unknown:///|
11 >,

12 ...
13 >},
14 added={ <
15 |java+method:///api/FileManager/isFile(java.lang.String)|,
16 <
17 |unknown:///|,
18 |java+method:///api/FileManager/isFile(java.lang.String)|
19 >,

20 ...
21 >},
22 renamed={<
23 |java+method:///api/FileManager/fileExists(java.lang.String)|,
24 <
25 |java+method:///api/FileManager/fileExists(java.lang.String)|,
26 |java+method:///api/FileManager/isFile(java.lang.String)|

29 June 2019 Version 1.3
Confidentiality: Public Distribution

Page 47

D2.7 Framework and API Analysis - Final Report

27 >,
28 0.87,
29 "Jaccard"
30 >},
31 moved={},
32 deprecated={},
33 paramLists={},
34 types={},
35 implements={},
36 extends={},
37 accessModifiers={},
38 abstractModifiers={},
39 staticModifiers={},
40 finalModifiers={},
41)

Listing 9: Method-level ∆-model of the motivating example.

First, the ∆-model outputs pointers to the two versions of the analysed API: FileManagerv1 and FileManager

v2 (Lines 2-5). Then, it specifies a list of API changes between the two versions. In our case, the renamed

field is populated with a reference to the api.FileManager.fileExists(String) method (Line 23),
specifying that it has been renamed to api.FileManager.isFile(String) in the new version of the API
(Lines 24-27). This mapping is accompanied by a similarity score or confidence that in this case corresponds
to 0.87 (Line 28), and the Jaccard similarity method (Line 29). Additionally, the removed and added

fields are populated with references to the api.FileManager.fileExists(String) (Lines 6-13) and
the api.FileManager.isFile(String) methods (Lines 14-21), respectively. All removals and additions
detected between two versions of an API should be reported in these two relations, regardless of any further
classification of a member element in one of the fields of the ∆-model (as it is the case in our renaming
example).

This ∆-model can then be sent as input to the detections(loc, Delta) function, together with a pointer to
the source code of the client code, which computes a Detection model pointing to the locations in the client
code that must be migrated. Specifically, the location on Line 3 of Listing 10 points to the Line 8, characters 22
to 32, of the file Client.java (cf. Listing 4), which is the exact location of the method call that must be mi-
grated. The Detection model presents the mapping identified with the ∆-model (Lines 4-12), and the type of
API change, which in this case is renamed() (Line 13).

1 list[Detection]: [
2 detection (

3 |file:///home/ ... /FileManagerClient/src/client/Client.java|(145,10,<8,22>,<8,32>),
4 <
5 |java+method:///api/FileManager/fileExists(java.lang.String)|,
6 <
7 |java+method:///api/FileManager/fileExists(java.lang.String)|,
8 |java+method:///api/FileManager/isFile(java.lang.String)|
9 >,

10 0.87,
11 "Jaccard",
12 >
13 renamed())
14]

Page 48 Version 1.3
Confidentiality: Public Distribution

29 June 2019

D2.7 Framework and API Analysis - Final Report

Listing 10: Detection model of the motivating example.

With the provided information a client project developer can pinpoint the affected code and migrate it according
to the proposed mapping. This manual (and in this case, trivial) migration is presented on Line 8 of Listing 11.
The client project relying on the FileManagerv2 now compiles and offers the expected functionality. Develop-
ers of the client project now make use of newly introduced features in the FileManager class. Specifically,
they invoke the newly introduced method api.FileManager.toURI(String) (Line 10).

1 package client;
2
3 import api.FileManager;
4 import api.URI;
5
6 public class Client {
7 public void foo() {
8 FileManager fm = new FileManager();
9 boolean exists = fm.isFile("/etc/passwd");

10 URI uri = toURI("/etc/passwd");
11 }
12 }
13

Listing 11: Migrated client code using the FileManager APIv2.

We can now create a Migration model from the existing artefacts. In this particular example, the creation
of the Migration model does not serve any particular purpose, but it shows how it should look like to have
a better understanding of the artefact. Listing 12 depicts the Migration model obtained from analysing the
two versions of the API and the two versions of the client project. In this case we can see that the oldDecl

and newDecl point to the same API member, which corresponds to client.Client.foo() (Lines 3-4). The
model also tells us that the oldUsed API member api.FileManager.fileExists(java.lang.String)
(Line 5) is effectively replaced by the newUsed member api.FileManager.isFile(java.lang.String)
(Line 6). The oldUses set considers the api.FileManager.fileExists(java.lang.String) method,
which was the only API access point that was being used within the client.Client.foo() declaration
(Line 7). Finally, the newUses set considers the api.FileManager.isFile(java.lang.String) and the
api.FileManager.toURI(java.lang.String) methods, both of them being used within the new version
of the client.Client.foo() declaration (Lines 8-11).

1 list[Migration]: [
2 migration (
3 oldDecl = |java+method:///client/Client/foo()|,
4 newDecl = |java+method:///client/Client/foo()|,
5 oldUsed = |java+method:///api/FileManager/fileExists(java.lang.String)|,
6 newUsed = |java+method:///api/FileManager/isFile(java.lang.String)|,
7 oldUses = { |java+method:///api/FileManager/fileExists(java.lang.String)| },
8 newUses = {
9 |java+method:///api/FileManager/isFile(java.lang.String)| ,

10 |java+method:///api/FileManager/toURI(java.lang.String)|
11 })
12]

29 June 2019 Version 1.3
Confidentiality: Public Distribution

Page 49

D2.7 Framework and API Analysis - Final Report

Listing 12: Migration model of the motivating example.

As of now, MARACAS only points to the precise locations of the code elements that must be migrated to comply
with updated versions of an API. Further assistance covering API mappings, code snippets, and additional
documentation is provided by CROSSMINER partners in deliverables D3.5 – Mining Documentation and
Code Snippets and D6.5 – The CROSSMINER knowledge base – Final Report.

12 Case Studies

In this section, we evaluate the capability of MARACAS to reason about API evolution and migration using two
complementary case studies. The first case study targets Google Guava, a mature and widely-used Java library
primarily developed by Google. The second case study targets the plug-in API of SonarQube which allows
developers to implement their own metrics and dashboard atop the SonarQube infrastructure, and which is at the
heart of FrontEndArt’s use case (cf. Use Case 3: Software API Coupled Evolution in D1.2 – Evaluation Plan).
We choose these two case studies because the way their developers handle their evolution as well as the way
users of these APIs interact with them is fundamentally different. While Guava is primarily used by instantiating
types of the API and invoking their methods, the SonarQube plug-in API is primarily used by defining new
types that extend or implement types of the API, enabling the SonarQube framework to automatically invoke
the methods defined in client code (following the inversion of control style).

12.1 A Brief Historical Analysis of Google Guava

Guava is a collection of APIs for the Java programming language which provides support for basic utilities,
collections, graphs manipulation, concurrency, I/O, reflection utilities, etc. Guava is currently the 4th most used
library on Maven Central.9 While Guava is an open-source framework, it was originally intended to be used
mostly in Google’s internal software projects. As a result, Guava’s roadmap is set by Google developers, and
developers rarely accept external contributions which helps ensuring the consistency and stability of the library
throughout its evolution.10 Guava was first released publicly on Maven Central in September 2011 with release
10.0; the latest version published on Maven Central is 27.1, released in March 2019.

In this case study, we study the course of evolution of Guava over the past 8 years, analyzing the 17 major
revisions released over this period of time. For every major revision, we use MARACAS to parse and analyze
the corresponding JAR file downloaded from Maven Central and, when appropriate, to compare two JARs
corresponding to two subsequent versions. This case study allows us to showcase examples of analyses that can
be conducted using MARACAS. As described in the companion deliverable D2.8 – API Analysis Components,
these analyses are meant to be integrated in a dedicated API dashboard to help developers and deciders evaluate
the maturity and stability of OSS projects and libraries.

Number and nature of declarations Figure 15 depicts the number of declarations (all declarations,
including private and protected declarations that are not accessible from the outside) in Guava over 17 major
versions. Unsurprisingly, most of the declarations are methods, followed by field declarations and types (classes,

9https://mvnrepository.com/popular
10https://github.com/google/guava/wiki/HowToContribute

Page 50 Version 1.3
Confidentiality: Public Distribution

29 June 2019

https://mvnrepository.com/popular
https://github.com/google/guava/wiki/HowToContribute

D2.7 Framework and API Analysis - Final Report

interfaces, and enumerations). We observe that the number of declarations in Guava has steadily increased over
the years with an average rate of growth per major version of ~3%, for a total of ~63% increase over 8 years. To
compute this data, we simply rely on the M3 models computed by Rascal to count the number of occurence of
each kind of declaration.

0

5000

10000

15000

g−11.0 g−12.0 g−13.0 g−14.0 g−15.0 g−16.0 g−17.0 g−18.0 g−19.0 g−20.0 g−21.0 g−22.0 g−23.0 g−24.0 g−25.0 g−26.0 g−27.0
Guava Versions

D
ec

la
ra

tio
n

C
ou

nt

Declarations

Types

Methods

Fields

Figure 15: Type (class, interface, enumeration), method, and field declarations in Guava over time

Figure 16 depicts the evolution of the number of public declarations (classes, interfaces, enumerations, methods,
fields) in the Guava API over time. This evolution naturally follows a similar trend as the total number of
declarations in Guava (cf. Figure 15).

29 June 2019 Version 1.3
Confidentiality: Public Distribution

Page 51

D2.7 Framework and API Analysis - Final Report

0

2500

5000

7500

g−10.0 g−11.0 g−12.0 g−13.0 g−14.0 g−15.0 g−16.0 g−17.0 g−18.0 g−19.0 g−20.0 g−21.0 g−22.0 g−23.0 g−24.0 g−25.0 g−26.0 g−27.0
Guava Versions

D
ec

la
ra

tio
n

C
ou

nt

Declarations

Types

Methods

Fields

Figure 16: Public declarations in Guava over time

Breaking versus non-breaking changes For each couple of JAR representing version N and version
N + 1, we use MARACAS to compute the ∆-model between these versions. We use the filtering function or
MARACAS to compute the set of all changes, non-breaking changes, and breaking changes. The proportion of
breaking changes related to the total number of changes varies from version to version and averages ~7% for
each major version. This indicates that the bulk of changes (i) happens in protected parts of the library that are
not exposed through the API or (ii) does not break the source and binary compatibility of the API. This can
be explained by the particular attention that Google developers pay to not breaking their API, as well as the
maturity and stability that the library has reached over the years. While the codebase and library keep evolving
to incorporate new feature, bug fixes, and various other improvement, it does not impact the interface of the
library significantly, nor its clients.

Page 52 Version 1.3
Confidentiality: Public Distribution

29 June 2019

D2.7 Framework and API Analysis - Final Report

0

1000

2000

3000

g−12.0 g−13.0 g−14.0 g−15.0 g−16.0 g−17.0 g−18.0 g−19.0 g−20.0 g−21.0 g−22.0 g−23.0 g−24.0 g−25.0 g−26.0 g−27.0
Guava Versions

C
ha

ng
es Changes

Breaking

Non−breaking

Figure 17: Breaking and non-breaking changes per release

Nature of breaking changes Unsurprisingly, and as most of the Java declarations in Guava are methods
(cf. Figure 15 and Figure 16), the majority of breaking changes over time are related to methods, followed by
types and then fields, as depicted in Figure 18. This indicates that support for migrating client code using the
Guava API should primarily focus on the changes occurring at the method level, such as changes in modifiers,
parameters lists, and return types.

29 June 2019 Version 1.3
Confidentiality: Public Distribution

Page 53

D2.7 Framework and API Analysis - Final Report

0

50

100

150

g−11.0 g−12.0 g−13.0 g−14.0 g−15.0 g−16.0 g−17.0 g−18.0 g−19.0 g−20.0 g−21.0 g−22.0 g−23.0 g−24.0 g−25.0 g−26.0 g−27.0
Guava Versions

C
ha

ng
es

Change

Types

Methods

Fields

Figure 18: Nature of breaking changes over time

As shown in Figure 19, added and removed elements are the most common. While it may seem counter-intuitive
that new elements (e.g., methods) introduced in an API may break it, remember that adding new methods in an
abstract class that is being extended in client code forces the client code to provide an implementation of the
new method. MARACAS is able to detect such scenarios and to report potentially breaking changes. Similarly, a
large number of breaking changes are due to the introduction of new implements relations between classes and
interfaces in the API: similarly to the previous case, classes in the client code that extends these classes should
provide an implementation for the newly inherited methods if the class in the API does not provide a default
implementation.

Page 54 Version 1.3
Confidentiality: Public Distribution

29 June 2019

D2.7 Framework and API Analysis - Final Report

0

50

100

150

g−11.0 g−12.0 g−13.0 g−14.0 g−15.0 g−16.0 g−17.0 g−18.0 g−19.0 g−20.0 g−21.0 g−22.0 g−23.0 g−24.0 g−25.0 g−26.0 g−27.0
Guava Versions

C
ha

ng
es

Type

Access modifier

Final modifier

Static modifier

Abstract modifier

Parameters list

Return/field type

Extension

Implementation

Deprecated

Renamed

Moved

Removed

Added

Figure 19: Types of breaking changes over time

In this first case study, we only study the evolution of changes in the API of Guava independently from the
way it is used in client code. In constrast, the second case study introduced below focuses on the use of the
SonarQube API by its clients.

12.2 SonarQube Plug-in API

SonarQube [7] is an open-source tool for supporting continuous inspection of source code developed by
SonarSource. Its main features entail detection of bugs, vulnerabilities, and code smells by means of using
code static analysis. Developers can leverage the SonarQube framework to implement their own metrics.
The CROSSMINER partner FrontEndART develops SourceMeter and SourceMeter-based plugins atop the
SonarQube infrastructure. All these plugins are offered to end users of the open-source platform. However,
their main concern is the constant need to upgrade SourceMeter plugins when the API of the SonarQube
framework evolves. SonarQube releases a major version yearly, and minor versions every two to three months.
FrontEndART developers are also interested in the migration of deprecated API members, even though they do
not necessarily break the plugins code.

In this section, we use MARACAS to explore the evolution of the SonarQube API between versions 4.2 and
6.7, for which SourceMeter developers have already manually migrated their plugins. Different change types
including both breaking and non-breaking changes, are stored in our ∆-model. Afterwards, we detect how this
evolution affects the SourceMeter plug-in for Java version 8.2. To select the abovementioned versions for both
SonarQube and SourceMeter, we check available releases in the SourceMeter GitHub repository found at https:
//github.com/FrontEndART/SonarQube-plug-in. We then identify the latest SonarQube dependency
version–that is, 6.7–and we then identify the two releases in which there is a change in the SonarQube dependency
version in the POM file. In the end, we detect a SonarQube version change between SourceMeter version

29 June 2019 Version 1.3
Confidentiality: Public Distribution

Page 55

https://github.com/FrontEndART/SonarQube-plug-in
https://github.com/FrontEndART/SonarQube-plug-in

D2.7 Framework and API Analysis - Final Report

8.2 and version 8.2v6.7, as labeled by FrontEndART developers. We wrap up the section by describing the
manual migration performed by FrontEndART developers, and how it aligns with our approach. We included a
SourceMeter pipeline in our tool to replicate the current analysis, which can be found at https://github.com/
crossminer/maracas/tree/master/maracas/src/org/maracas/pipeline/sonarqube/sourcemeter.

The work described here is a first attempt at supporting concrete partners of the CROSSMINER project
in their needs regarding API migration. In the remainder of the project, we will collaborate closely with
FrontEndART and dive deeper into the specificities of SonarQube and their tool SourceMeter to assess precisely
how MARACAS helps.

Breaking versus non-breaking changes. As mentioned above, we compute the ∆-model between ver-
sions 4.2 and 6.7 of SonarQube JARs taken from Maven Central. We then filter the resulting model to breaking
changes only. Both breaking and non-breaking changes are plotted in Figure 20. The ∆-model shows 76.190
changes in the SonarQube framework between the two target versions. Contrary to Guava, 44% of changes in
SonarQube are considered breaking changes. Nevertheless, it is important to note that we are not comparing
two consecutive versions of the framework, instead there are two major versions and several minor versions in
between the studied JARs. In any case, these number of changes are a real concern for FrontEndART developers.

Abstract modifiers

Access modifiers

Added

Deprecated

Extends

Final modifiers

Implements

Moved

Parameter lists

Removed

Renamed

Static modifiers

Types

1e+02 1e+05 1e+08

Number of changes

Change

Breaking

Non−breaking

Figure 20: SonarQube changes between versions 4.2 and 6.7

Breaking change detections. We consider the core and Java plug-ins from SourceMeter version 8.2 as
client projects to compute the set of breaking change detections. Thus, after computing the SonarQube ∆-model
we compute the corresponding Detection models. On the one hand, we get 150 detection of breaking changes
in the core SourceMeter plug-in. Figure 21 depicts all detections based on the change type (e.g., implements,
deprecated) and on the the type of the affected API member (i.e., type, method, field). As it can be seen, the
client project is using API types whose interfaces have changed or they have been deprecated. Given that
SonarQube clients are supposed to follow an inversion of control style, the implements change detections are

Page 56 Version 1.3
Confidentiality: Public Distribution

29 June 2019

https://github.com/crossminer/maracas/tree/master/maracas/src/org/maracas/pipeline/sonarqube/sourcemeter
https://github.com/crossminer/maracas/tree/master/maracas/src/org/maracas/pipeline/sonarqube/sourcemeter

D2.7 Framework and API Analysis - Final Report

expected. Some methods are also labelled as deprecated and one method has been added to an API type. The
latter should be consider if one class in the client code is extending or implementing the API type providing
the added method. 99% of detections are related to the use of API affected types, the remaining 1% concern
method changes.

Abstract modifiers

Access modifiers

Added

Deprecated

Extends

Final modifiers

Implements

Moved

Parameter lists

Removed

Renamed

Static modifiers

Types

0 50 100

Number of changes

Change

Types

Methods

Fields

Figure 21: Breaking change detections in the core plug-in of SourceMeter version 8.2

29 June 2019 Version 1.3
Confidentiality: Public Distribution

Page 57

D2.7 Framework and API Analysis - Final Report

Abstract modifiers

Access modifiers

Added

Deprecated

Extends

Final modifiers

Implements

Moved

Parameter lists

Removed

Renamed

Static modifiers

Types

0 10 20 30 40 50

Number of changes

Change

Types

Methods

Fields

Figure 22: Breaking change detections in the Java plug-in of SourceMeter version 8.2

On the other hand, we spot 110 breaking change detections in the SourceMeter plug-in for Java. Figure 22 also
shows detections in the Java plug-in based on change and API member types. In this case, 93% of detections
are related to type changes, 3% to method changes, and 4% to field changes. Once again, there are several
implements changes in the Detection model, that is 44% of all detections. However, the most represented type
of detected change corresponds to the deprecated type present in 46% of detections. Besides from these two
popular scenarios, the Java plug-in has some code affected by removed, added, and abstract modifier changes.
As in the case of the core plug-in, most of the changes are related to API type modifications.

13 Conclusion

In this part, we have extensively surveyed the state of the art on API evolution and migration and the problem of
API-client co-evolution. We have identified a number of limitations that make existing approaches and tools too
limited to address the requirements of CROSSMINER partners and use cases.

We build on the state of the art to present our new approach and tool, MARACAS, which enables us to address the
problem of API-client co-evolution by reifying three kinds of models: usage models, delta models, and detection
models. We evaluate the capability of Maracas to analyze projects regarding API evolution and migration using
two case studies: a widely-used mature OOS library (Google Guava), and a mature library used by our partners
in their use case (SonarQube).

In the remainder of the project, we will collaborate with our partners closely to put MARACAS in their hands
and support their evaluation scenarios.

Page 58 Version 1.3
Confidentiality: Public Distribution

29 June 2019

D2.7 Framework and API Analysis - Final Report

Part III

Satisfaction of CROSSMINER Requirements
In this section, we present the alignment of the work described in this document with the requirements of
CROSSMINER use cases and technologies extracted from D1.1 – Project Requirements. Specifically, we
refer to the requirements listed in Section 17: Consolidated Requirements and Mapping for WP2: Mining
Source Code related to API analysis and the use case requirements.

Req.
No.

Requirement Priority Status

D6 Source code mining shall be able to
classify source code changes (com-
mits) as API or non API changes

SHALL Full: MARACAS computes changes and clas-
sify them as breaking and non-breaking API
changes. MARACAS can flexibly compute
changes between two major versions of a li-
brary, two minor versions, two JARs, or even
between two commits.

D7 Source code mining shall provide
metrics for patterns and anti-patterns
related to a commit

SHALL Partial: MARACAS partially addresses this re-
quirements by enabling developers to detect
whether a given commit introduces breaking
changes in the API of a project which, in cer-
tain settings, can be considered an anti-pattern.
More precisely, it computes the number of
breaking and non-breaking changes, which al-
lows developers to look for problematic code
introduced in a commit. Other metrics of the
CROSSMINER platform, which are not de-
scribed in this document, also partially address
this requirement.

D12 Source code mining shall be able
to detect the use of a 3rd-party API
function from the source code of a
project

SHALL Full: The usage models computed by MARA-
CAS precisely infer which parts of a 3rd-party
API is invoked from a given piece of code in
clients.

D13 Source code mining shall be able
to extract the list of changed/depre-
cated 3rd-party API methods from
the source code of the third-party
API

SHALL Full: MARACAS is able to compute (in the
form of ∆-models) the list of changed and
deprecated methods from the source code or
bytecode of two versions of an API.

29 June 2019 Version 1.3
Confidentiality: Public Distribution

Page 59

D2.7 Framework and API Analysis - Final Report

D14 Source code mining shall be able
to detect from the configuration set-
tings of a project if a new version
of a used 3rd-party library is avail-
able and determine migration pattern
from two (or more) code snippets
when one of them uses the old API
and the other one the new API

SHALL Full: The first part of this requirement (“if a
new version [...] is available“) is addressed
in WP6). The migration model introduced in
this document allows to infer, from the source
code of a client that has been migrated, migra-
tion patterns that can be re-applied on other
projects.

D15 Source code mining shall be able
to analyse the API documentation
(when available) and determine if it
matches the API of the library

SHOULD None.

D17 Source code mining shall be able to
identify the public API of a library,
including the number (and which)
functions are exposed in the API

SHALL Full: As introduced in Part II, the models com-
puted by MARACAS precisely specify which
types/methods/fields are publicly exposed in
the API of a library.

U70 Able to identify the list of changed
third-party API methods from the
source code of the third-party API

SHALL cf. D13.

U71 Able to identify the list of depre-
cated third-party API methods from
the source code of the third-party
API

SHALL cf. D13.

U72 Able to determine migration pattern
from two (or more) code snippets
when one of them uses the old third-
party API and the other uses the new
third-party API

SHALL cf. D14

U73 Able to identify the part of the API
that the developer is currently using
to provide code snippets in relation
with current development activity

SHALL Full: The FOCUS tool described in Part I ad-
dresses this requirement.

U98 Classify source code changes (com-
mits) as API or non API changes

SHALL cf.D6

U100 Able to identify the public API pro-
vided by projects

SHOULD cf. D17.

Table 9: Satisfaction of CROSSMINER requirements extracted
from D1.1 – Project Requirements.

Page 60 Version 1.3
Confidentiality: Public Distribution

29 June 2019

D2.7 Framework and API Analysis - Final Report

References
[1] Apache Maven. https://maven.apache.org. last access 24.08.2018.

[2] Attribute-Relation File Format (ARFF). https://www.cs.waikato.ac.nz/ml/weka/arff.html.
last access 24.08.2018.

[3] Codota. https://www.codota.com/. last access 24.08.2018.

[4] Eclipse JDT Core. https://www.eclipse.org/jdt/core. last access 24.08.2018.

[5] Maven Central Repository. https://mvnrepository.com. last access 24.08.2018.

[6] OSGi. https://www.osgi.org. last access 24.08.2018.

[7] SonarQube. https://www.sonarqube.org/. last access 28.06.2019.

[8] Tycho. https://www.eclipse.org/tycho. last access 24.08.2018.

[9] Mithun Acharya, Tao Xie, Jian Pei, and Jun Xu. Mining API Patterns As Partial Orders from Source Code:
From Usage Scenarios to Specifications. In 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations of Software Engineering, pages
25–34, New York, 2007. ACM.

[10] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining Association Rules Between Sets of Items
in Large Databases. In International Conference on Management of Data, pages 207–216, New York,
1993. ACM.

[11] Miltiadis Allamanis and Charles Sutton. Mining Source Code Repositories at Massive Scale Using
Language Modeling. In 10th Working Conference on Mining Software Repositories, pages 207–216,
Piscataway, 2013. IEEE.

[12] Anonymous. FOCUS: A Recommender System for Mining API Function Calls and Usage Patterns -
Online Appendix. https://github.com/icse19-focus/FOCUS. last access 24.08.2018.

[13] B. Basten, M. Hills, P. Klint, D. Landman, A. Shahi, M. J. Steindorfer, and J. J. Vinju. M3: A General
Model for Code Analytics in Rascal. In 1st International Workshop on Software Analytics, pages 25–28,
Piscataway, 2015. IEEE.

[14] Andrei Broder. On the Resemblance and Containment of Documents. In Compression and Complexity of
Sequences, pages 21–29, Washington, 1997. IEEE.

[15] Raymond P. L. Buse and Westley Weimer. Synthesizing API Usage Examples. In 34th International
Conference on Software Engineering, pages 782–792, Piscataway, 2012. IEEE.

[16] Silvio Cesare and Yang Xiang. Software Similarity and Classification. Springer, London, 2012.

[17] Annie Chen. Context-Aware Collaborative Filtering System: Predicting the User’s Preference in the
Ubiquitous Computing Environment. In First International Conference on Location- and Context-
Awareness, pages 244–253, Berlin, Heidelberg, 2005. Springer.

29 June 2019 Version 1.3
Confidentiality: Public Distribution

Page 61

https://maven.apache.org
https://www.cs.waikato.ac.nz/ml/weka/arff.html
https://www.codota.com/
https://www.eclipse.org/jdt/core
https://mvnrepository.com
https://www.osgi.org
https://www.sonarqube.org/
https://www.eclipse.org/tycho
https://github.com/icse19-focus/FOCUS

D2.7 Framework and API Analysis - Final Report

[18] Flavio Chierichetti, Ravi Kumar, Sandeep Pandey, and Sergei Vassilvitskii. Finding the Jaccard Median.
In 21st Symposium on Discrete Algorithms, pages 293–311, Philadelphia, 2010. Society for Industrial
and Applied Mathematics.

[19] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning Phrase Representations using RNN Encoder–Decoder for
Statistical Machine Translation. In Empirical Methods in Natural Language Processing, pages 1724–
1734, Stroudsburg, 2014. ACL.

[20] Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Alfonso Pierantonio. Automating Co-
evolution in Model-Driven Engineering. In 12th International Enterprise Distributed Object Computing
Conference, pages 222–231, Washington, 2008. IEEE.

[21] Joel Cordeiro, Bruno Antunes, and Paulo Gomes. Context-Based Recommendation to Support Problem
Solving in Software Development. In Third International Workshop on Recommendation Systems for
Software Engineering, pages 85–89, Piscataway, 2012. IEEE.

[22] James R. Cordy. The TXL Source Transformation Language. Sci. Comput. Program., 61(3):190–210,
2006.

[23] Bradley E. Cossette and Robert J. Walker. Seeking the Ground Truth: A Retroactive Study on the
Evolution and Migration of Software Libraries. In 20th International Symposium on the Foundations of
Software Engineering, pages 55:1–55:11, New York, 2012. ACM.

[24] Barthélémy Dagenais and Martin P. Robillard. Recommending Adaptive Changes for Framework
Evolution. In 30th International Conference on Software Engineering, pages 481–490, New York, 2008.
ACM.

[25] Barthélémy Dagenais and Martin P. Robillard. SemDiff: Recommending Adaptive Changes for Frame-
work Evolution. https://www.cs.mcgill.ca/~swevo/semdiff/, 2008.

[26] Roberto Di Cosmo and Stefano Zacchiroli. Software Heritage: Why and How to Preserve Software
Source Code. In 14th International Conference on Digital Preservation, pages 1–10, Kyoto, 2017.

[27] Tommaso Di Noia, Roberto Mirizzi, Vito Claudio Ostuni, Davide Romito, and Markus Zanker. Linked
Open Data to Support Content-based Recommender Systems. In 8th International Conference on
Semantic Systems, pages 1–8, New York, 2012. ACM.

[28] Danny Dig, Can Comertoglu, Darko Marinov, and Ralph Johnson. Automated Detection of Refactorings
in Evolving Components. In 20th European Conference on Object-Oriented Programming, pages
404–428, Berlin, Heidelberg, 2006. Springer.

[29] Danny Dig, Can Comertoglu, Darko Marinov, and Ralph Johnson. RefactoringCrawler. http://dig.
cs.illinois.edu/tools/RefactoringCrawler/download.html, 2006.

[30] Danny Dig and Ralph Johnson. The Role of Refactorings in API Evolution. In 21st International
Conference on Software Maintenance, pages 389–398, Washington, 2005. IEEE.

[31] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin Monperrus. Fine-
grained and accurate source code differencing. In Proceedings of the 29th ACM/IEEE international
conference on Automated software engineering, pages 313–324. ACM, 2014.

Page 62 Version 1.3
Confidentiality: Public Distribution

29 June 2019

https://www.cs.mcgill.ca/~swevo/semdiff/
http://dig.cs.illinois.edu/tools/RefactoringCrawler/download.html
http://dig.cs.illinois.edu/tools/RefactoringCrawler/download.html

D2.7 Framework and API Analysis - Final Report

[32] R. A. Fisher. Confidence limits for a cross-product ratio. Australian Journal of Statistics, 1962.

[33] Jaroslav Fowkes and Charles Sutton. PAM: Probabilistic API Miner. https://github.com/mast-
group/api-mining. last access 24.08.2018.

[34] Jaroslav Fowkes and Charles Sutton. Parameter-free Probabilistic API Mining Across GitHub. In 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering, pages 254–265, New
York, 2016. ACM.

[35] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley, Boston, 1999.

[36] Amruta Gokhale, Vinod Ganapathy, and Yogesh Padmanaban. Inferring Likely Mappings Between APIs.
In International Conference on Software Engineering, pages 82–91, Piscataway, 2013. IEEE.

[37] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. Deep Code Search. In 40th International Conference
on Software Engineering, pages 933–944, New York, 2018. ACM.

[38] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. Deep API Learning. In 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pages 631–642, New York,
2016. ACM.

[39] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. DeepAM: Migrate APIs with Multi-
modal Sequence to Sequence Learning. In 26th International Joint Conference on Artificial Intelligence,
pages 3675–3681. AAAI, 2017.

[40] Johannes Henkel and Amer Diwan. CatchUp!: Capturing and Replaying Refactorings to Support API
Evolution. In 27th International Conference on Software Engineering, pages 274–283, New York, 2005.
ACM.

[41] S. Holm. A simple sequentially rejective Bonferroni test procedure. Scandinavian Journal on Statistics,
1979.

[42] Reid Holmes and Gail C. Murphy. Using Structural Context to Recommend Source Code Examples. In
27th International Conference on Software Engineering, pages 117–125, New York, 2005. ACM.

[43] Paul Jaccard. The Distribution of the Flora in the Alpine Zone. New Phytologist, 11(2):37–50, 1912.

[44] C. Kemper and C. Overbeck. What’s New with JBuilder. In JavaOne Sun’s Worldwide Java Developer
Conference, San Francisco, 2005. Sun Microsystems.

[45] Miryung Kim, Matthew Gee, Alex Loh, and Napol Rachatasumrit. Ref-Finder: A Refactoring Recon-
struction Tool Based on Logic Query Templates. In 18th International Symposium on Foundations of
Software Engineering, pages 371–372, New York, 2010. ACM.

[46] Miryung Kim, David Notkin, and Dan Grossman. Automatic Inference of Structural Changes for
Matching Across Program Versions. In 29th International Conference on Software Engineering, pages
333–343, Washington, 2007. IEEE.

[47] Paul Klint, Tijs van der Storm, and Jurgen Vinju. EASY Meta-programming with Rascal. In 3rd
International Summer School Conference on Generative and Transformational Techniques in Software
Engineering, pages 222–289, Berlin, Heidelberg, 2011. Springer.

29 June 2019 Version 1.3
Confidentiality: Public Distribution

Page 63

https://github.com/mast-group/api-mining
https://github.com/mast-group/api-mining

D2.7 Framework and API Analysis - Final Report

[48] Philipp Koehn. Statistical Machine Translation. Cambridge University Press, Cambridge, 2009.

[49] Ron Kohavi. A Study of Cross-validation and Bootstrap for Accuracy Estimation and Model Selection.
In 14th International Joint Conference on Artificial Intelligence, pages 1137–1143, San Francisco, 1995.
Morgan Kaufmann Publishers Inc.

[50] M. M. Lehman. Programs, Life Cycles, and Laws of Software Evolution. Proceedings of the IEEE,
68(9):1060–1076, 1980.

[51] Meir M. Lehman and Juan F. Ramil. Software Evolution: Background, Theory, Practice. Inf. Process.
Lett., 88(1-2):33–44, 2003.

[52] VIadimir Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Soviet
Physics Doklady, 10:707–710, 1966.

[53] Jun Li, Chenglong Wang, Yingfei Xiong, and Zhenjiang Hu. SWIN: Towards Type-Safe Java Program
Adaptation Between APIs. In Workshop on Partial Evaluation and Program Manipulation, pages 91–102,
New York, 2015. ACM.

[54] Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Qing Xie, and Chen Fu. Portfolio: Finding
Relevant Functions and Their Usage. In 33rd International Conference on Software Engineering, pages
111–120, New York, 2011. ACM.

[55] Sichen Meng, Xiaoyin Wang, Lu Zhang, and Hong Mei. HiMa. https://github.com/
lebuitienduy/hima, 2008.

[56] Sichen Meng, Xiaoyin Wang, Lu Zhang, and Hong Mei. A History-based Matching Approach to
Identification of Framework Evolution. In 34th International Conference on Software Engineering, pages
353–363, Piscataway, 2012. IEEE.

[57] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed Representa-
tions of Words and Phrases and Their Compositionality. In 26th International Conference on Neural
Information Processing Systems, pages 3111–3119, USA, 2013. Curran Associates Inc.

[58] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and Andrian Marcus. How
Can I Use This Method? In 37th International Conference on Software Engineering, pages 880–890,
Piscataway, 2015. IEEE.

[59] Seyed Mehdi Nasehi, Jonathan Sillito, Frank Maurer, and Chris Burns. What Makes a Good Code
Example?: A Study of Programming Q&A in StackOverflow. In 28th IEEE International Conference on
Software Maintenance, pages 25–34, Piscataway, 2012. IEEE.

[60] Anh T. Nguyen, Tung T. Nguyen, and Tien N. Nguyen. Divide-and-Conquer Approach for Multi-
phase Statistical Migration for Source Code. In 30th International Conference on Automated Software
Engineering, pages 585–596, Washington, 2015. IEEE.

[61] Anh T. Nguyen, Zhaopeng Tu, and Tien N. Nguyen. Do Contexts Help in Phrase-Based, Statistical
Source Code Migration? In International Conference on Software Maintenance and Evolution, pages
155–165, Piscataway, 2016. IEEE.

Page 64 Version 1.3
Confidentiality: Public Distribution

29 June 2019

https://github.com/lebuitienduy/hima
https://github.com/lebuitienduy/hima

D2.7 Framework and API Analysis - Final Report

[62] Anh Tuan Nguyen, Hoan Anh Nguyen, Tung Thanh Nguyen, and Tien N. Nguyen. Statistical Learning
Approach for Mining API Usage Mappings for Code Migration. In 29th ACM/IEEE International
Conference on Automated Software Engineering, pages 457–468, New York, 2014. ACM.

[63] Hoan A. Nguyen, Tung T. Nguyen, Gary Wilson, Jr., Anh T. Nguyen, Miryung Kim, and Tien N. Nguyen.
A Graph-based Approach to API Usage Adaptation. In International Conference on Object Oriented
Programming Systems Languages and Applications, pages 302–321, New York, 2010. ACM.

[64] Phuong T. Nguyen, Juri Di Rocco, Davide Di Ruscio, Lina Ochoa, Thomas Degueule, and Massimil-
iano Di Penta. FOCUS: a recommender system for mining API function calls and usage patterns. In
Proceedings of the 41st International Conference on Software Engineering, ICSE 2019, Montreal, QC,
Canada, May 25-31, 2019, pages 1050–1060, 2019.

[65] Trong D. Nguyen, Anh T. Nguyen, and Tien N. Nguyen. Mapping API Elements for Code Migration
with Vector Representations. In 38th International Conference on Software Engineering, pages 756–758,
New York, 2016. ACM.

[66] Tung T. Nguyen, Hoan A. Nguyen, Nam H. Pham, Jafar M. Al-Kofahi, and Tien N. Nguyen. Graph-based
Mining of Multiple Object Usage Patterns. In 7th Joint Meeting of the European Software Engineering
Conference and the Symposium on The Foundations of Software Engineering, pages 383–392, New York,
2009. ACM.

[67] Marius Nita and David Notkin. Using Twinning to Adapt Programs to Alternative APIs. In 32nd
International Conference on Software Engineering, pages 205–214, New York, 2010. ACM.

[68] Haoran Niu, Iman Keivanloo, and Ying Zou. API Usage Pattern Recommendation for Software Develop-
ment. Journal of Systems and Software, 129(C):127–139, 2017.

[69] Rahul Pandita, Raoul P. Jetley, Sithu D. Sudarsan, and Laurie Williams. APISIM: Discovering Likely
Mappings between APIs using Text Mining. https://sites.google.com/a/ncsu.edu/apisim/,
2015.

[70] Rahul Pandita, Raoul P. Jetley, Sithu D. Sudarsan, and Laurie Williams. Discovering Likely Mappings
between APIs Using Text Mining. In 15th International Working Conference on Source Code Analysis
and Manipulation, pages 231–240, Piscataway, 2015. IEEE.

[71] David L. Parnas. Information Distribution Aspects of Design Methodology. Technical report, Departe-
ment of Computer Science, Carnegie Mellon University, Pittsburgh, 1971.

[72] Luca Ponzanelli, Alberto Bacchelli, and Michele Lanza. Leveraging Crowd Knowledge for Software
Comprehension and Development. In 17th European Conference on Software Maintenance and Reengi-
neering, pages 57–66, Washington, 2013. IEEE.

[73] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and Michele Lanza. Mining
StackOverflow to Turn the IDE into a Self-confident Programming Prompter. In 11th Working Conference
on Mining Software Repositories, pages 102–111, New York, 2014. ACM.

[74] Luca Ponzanelli, Simone Scalabrino, Gabriele Bavota, Andrea Mocci, Rocco Oliveto, Massimiliano
Di Penta, and Michele Lanza. Supporting Software Developers with a Holistic Recommender System.
In 39th International Conference on Software Engineering, pages 94–105, Piscataway, 2017. IEEE.

29 June 2019 Version 1.3
Confidentiality: Public Distribution

Page 65

https://sites.google.com/a/ncsu.edu/apisim/

D2.7 Framework and API Analysis - Final Report

[75] Kyle Prete, Napol Rachatasumrit, Nikita Sudan, and Miryung Kim. Ref-Finder. https://github.
com/SEAL-UCLA/Ref-Finder/, 2010.

[76] Kyle Prete, Napol Rachatasumrit, Nikita Sudan, and Miryung Kim. Template-based Reconstruction of
Complex Refactorings. In International Conference on Software Maintenance, pages 1–10, Washington,
2010. IEEE.

[77] Mukund Raghothaman, Yi Wei, and Youssef Hamadi. SWIM: Synthesizing What I Mean: Code Search
and Idiomatic Snippet Synthesis. In 38th International Conference on Software Engineering, pages
357–367, New York, 2016. ACM.

[78] Mohammad Rahman, Shamima Yeasmin, and Chanchal Roy. Towards a Context-Aware IDE-Based
Meta Search Engine for Recommendation about Programming Errors and Exceptions. In Conference
on Software Maintenance, Reengineering, and Reverse Engineering, pages 194–203, Piscataway, 2014.
IEEE.

[79] Veselin Raychev, Martin Vechev, and Eran Yahav. Code Completion with Statistical Language Models.
In 35th ACM SIGPLAN Conference on Programming Language Design and Implementation, pages
419–428, New York, 2014. ACM.

[80] Peter C. Rigby and Martin P. Robillard. Discovering Essential Code Elements in Informal Documentation.
In 35th International Conference on Software Engineering, pages 832–841, Piscataway, 2013. IEEE.

[81] Martin P Robillard. What Makes APIs Hard to Learn? Answers from Developers. IEEE software,
26(6):27–34, 2009.

[82] Martin P. Robillard, Eric Bodden, David Kawrykow, Mira Mezini, and Tristan Ratchford. Automated
API Property Inference Techniques. IEEE Transactions on Software Engineering, 39(5):613–637, 2013.

[83] M. A. Saied, O. Benomar, H. Abdeen, and H. Sahraoui. Mining Multi-level API Usage Patterns. In 22nd
International Conference on Software Analysis, Evolution, and Reengineering, pages 23–32, Piscataway,
2015. IEEE.

[84] Mohamed Aymen Saied, Hani Abdeen, Omar Benomar, and Houari Sahraoui. Could We Infer Unordered
API Usage Patterns Only Using the Library Source Code? In 23rd International Conference on Program
Comprehension, pages 71–81, Piscataway, 2015. IEEE.

[85] Anirudh Santhiar, Omesh Pandita, and Aditya Kanade. MathFinder: Math API Discovery and Migration.
http://www.iisc-seal.net/mathfinder/, 2014.

[86] Anirudh Santhiar, Omesh Pandita, and Aditya Kanade. Mining Unit Tests for Discovery and Migration
of Math APIs. ACM Trans. Softw. Eng. Methodol., 24(1):4:1–4:33, 2014.

[87] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based Collaborative Filtering
Recommendation Algorithms. In 10th International Conference on World Wide Web, pages 285–295,
New York, 2001. ACM.

[88] J. Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen. The Adaptive Web: Methods and
Strategies of Web Personalization. chapter Collaborative Filtering Recommender Systems, pages 291–
324. Springer, Berlin, Heidelberg, 2007.

Page 66 Version 1.3
Confidentiality: Public Distribution

29 June 2019

https://github.com/SEAL-UCLA/Ref-Finder/
https://github.com/SEAL-UCLA/Ref-Finder/
http://www.iisc-seal.net/mathfinder/

D2.7 Framework and API Analysis - Final Report

[89] Thorsten Schäfer, Jan Jonas, and Mira Mezini. Mining Framework Usage Changes from Instantiation
Code. In 30th International Conference on Software Engineering, pages 471–480, New York, 2008.
ACM.

[90] Danilo Silva, Nikolaos Tsantalis, and Marco T. Valente. Why We Refactor? Confessions of GitHub
Contributors. In 24th International Symposium on Foundations of Software Engineering, pages 858–870,
New York, 2016. ACM.

[91] Danilo Silva and Marco T. Valente. RefDiff. https://github.com/aserg-ufmg/RefDiff/, 2017.

[92] Danilo Silva and Marco T. Valente. RefDiff: Detecting Refactorings in Version Histories. In 14th
International Conference on Mining Software Repositories, pages 269–279, Piscataway, 2017. IEEE.

[93] Amit Singhal. Modern Information Retrieval: A Brief Overview. IEEE Data Eng. Bull., 24(4):35–43,
2001.

[94] James Surowiecki. The Wisdom of Crowds. Anchor, 2005.

[95] Watanabe Takuya and Hidehiko Masuhara. A Spontaneous Code Recommendation Tool Based on
Associative Search. In 3rd International Workshop on Search-Driven Development: Users, Infrastructure,
Tools, and Evaluation, pages 17–20, New York, 2011. ACM.

[96] Cédric Teyton, Jean-Rémy Falleri, and Xavier Blanc. Automatic discovery of function mappings between
similar libraries. In 20th Working Conference on Reverse Engineering, WCRE 2013, Koblenz, Germany,
October 14-17, 2013, pages 192–201, 2013.

[97] Cédric Teyton, Jean-Rémy Falleri, and Xavier Blanc. Automatic Discovery of Function Mappings
between Similar Libraries. In 20th Working Conference on Reverse Engineering, pages 192–201,
Piscataway, 2013. IEEE.

[98] S. Thummalapenta and Tao Xie. SpotWeb: Detecting Framework Hotspots and Coldspots via Mining
Open Source Code on the Web. In 23rd IEEE/ACM International Conference on Automated Software
Engineering, pages 327–336, Washington, 2008. IEEE.

[99] Christoph Treude and Martin P. Robillard. Augmenting API Documentation with Insights from Stack
Overflow. In 38th International Conference on Software Engineering, pages 392–403, New York, 2016.
ACM.

[100] Nikolaos Tsantalis, Matin Mansouri, Laleh M. Eshkevari, Davood Mazinanian, and Danny Dig. Accurate
and Efficient Refactoring Detection in Commit History. In 40th International Conference on Software
Engineering, pages 483–494, New York, 2018. ACM.

[101] Nikolaos Tsantalis, Matin Mansouri, Laleh M. Eshkevari, Davood Mazinanian, and Danny Dig. Refac-
toringMiner. https://github.com/tsantalis/RefactoringMiner/, 2018.

[102] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Andrea
De Lucia, and Denys Poshyvanyk. There and Back Again: Can You Compile That Snapshot? Journal of
Software: Evolution and Process, 29(4):e1838, 2016.

[103] Gias Uddin and Martin P Robillard. How API Documentation Fails. IEEE Software, 32(4):68–75, 2015.

29 June 2019 Version 1.3
Confidentiality: Public Distribution

Page 67

https://github.com/aserg-ufmg/RefDiff/
https://github.com/tsantalis/RefactoringMiner/

D2.7 Framework and API Analysis - Final Report

[104] Chenglong Wang, Jiajun Jiang, Jun Li, Yingfei Xiong, Xiangyu Luo, Lu Zhang, and Zhenjiang Hu.
Transforming Programs between APIs with Many-to-Many Mappings. In 30th European Conference on
Object-Oriented Programming, pages 25:1–25:26, Dagstuhl, 2016. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik.

[105] J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie, and D. Zhang. Mining Succinct and High-coverage API
Usage Patterns from Source Code. In 10th Working Conference on Mining Software Repositories, pages
319–328, Piscataway, 2013. IEEE.

[106] Jianyong Wang and Jiawei Han. BIDE: Efficient Mining of Frequent Closed Sequences. In 20th
International Conference on Data Engineering, pages 79–90, Washington, 2004. IEEE.

[107] Tzu-Tsung Wong. Performance Evaluation of Classification Algorithms by K-fold and Leave-one-out
Cross Validation. Pattern Recognition, 48(9):2839–2846, 2015.

[108] Wei Wu, Yann-Gaël Guéhéneuc, Giuliano Antoniol, and Miryung Kim. AURA: A Hybrid Approach
to Identify Framework Evolution. In 32nd International Conference on Software Engineering, pages
325–334, New York, 2010. ACM.

[109] Wei Wu, Yann-Gaël Guéhéneuc, Giuliano Antoniol, and Miryung Kim. AURA: A Hybrid Approach to
Identify Framework Evolution. www.ptidej.net/downloads/experiments/icse10b/, 2010.

[110] Zhenchang Xing and Eleni Stroulia. API-Evolution Support with Diff-CatchUp. IEEE Trans. Softw.
Eng., 33(12):818–836, 2007.

[111] Zhenchang Xing and Eleni Stroulia. Differencing Logical UML Models. Automated Software Engg.,
14(2):215–259, 2007.

[112] Hao Zhong, Suresh Thummalapenta, and Tao Xie. Exposing Behavioral Differences in Cross-Language
API Mapping Relations. In 16th International Conference on Fundamental Approaches to Software
Engineering, pages 130–145, Berlin, Heidelberg, 2013. Springer.

[113] Hao Zhong, Suresh Thummalapenta, Tao Xie, Lu Zhang, and Qing Wang. Mining API Mapping for
Language Migration. In 32nd International Conference on Software Engineering, pages 195–204, New
York, 2010. ACM.

[114] Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong Mei. MAPO: Mining and Recommending API
Usage Patterns. In 23rd European Conference on Object-Oriented Programming, pages 318–343, Berlin,
Heidelberg, 2009. Springer.

Page 68 Version 1.3
Confidentiality: Public Distribution

29 June 2019

www.ptidej.net/downloads/experiments/icse10b/

FOCUS: A Recommender System for Mining API
Function Calls and Usage Patterns

Phuong T. Nguyen, Juri Di Rocco,
Davide Di Ruscio

Università degli Studi dell’Aquila
L’Aquila, Italy

{firstname.lastname}@univaq.it

Lina Ochoa, Thomas Degueule
Centrum Wiskunde & Informatica

Amsterdam, Netherlands
{firstname.lastname}@cwi.nl

Massimiliano Di Penta
Università degli Studi del Sannio

Benevento, Italy
dipenta@unisannio.it

Abstract—Software developers interact with APIs on a daily
basis and, therefore, often face the need to learn how to use
new APIs suitable for their purposes. Previous work has shown
that recommending usage patterns to developers facilitates the
learning process. Current approaches to usage pattern recom-
mendation, however, still suffer from high redundancy and poor
run-time performance. In this paper, we reformulate the problem
of usage pattern recommendation in terms of a collaborative-
filtering recommender system. We present a new tool, FOCUS,
which mines open-source project repositories to recommend API
method invocations and usage patterns by analyzing how APIs
are used in projects similar to the current project. We evaluate
FOCUS on a large number of Java projects extracted from
GitHub and Maven Central and find that it outperforms the state-
of-the-art approach PAM with regards to success rate, accuracy,
and execution time. Results indicate the suitability of context-
aware collaborative-filtering recommender systems to provide
API usage patterns.

I. INTRODUCTION

Leveraging the time-honored principles of modularity and
reuse, modern software systems development typically entails
the use of external libraries. Rather than implementing new
systems from scratch, developers look for, and try to integrate
into their projects, libraries that provide functionalities of in-
terest. Libraries expose their functionality through Application
Programming Interfaces (APIs) which govern the interaction
between a client project and the libraries it uses.

Developers therefore often face the need to learn new APIs.
The knowledge needed to manipulate an API can be extracted
from various sources: the API source code itself, the official
website and documentation, Q&A websites such as StackOver-
flow, forums and mailing lists, bug trackers, other projects
using the same API, etc. However, official documentation often
merely reports the API description without providing non-
trivial example usages. Besides, querying informal sources
such as StackOverflow might become time-consuming and
error-prone [32]. Also, API documentation may be ambiguous,
incomplete, or erroneous [42], while API examples found on
Q&A websites may be of poor quality [18].

Over the past decade, the problem of API learning has
garnered considerable interest from the research community.
Several techniques have been developed to automate the
extraction of API usage patterns [33] in order to reduce devel-
opers’ burden when manually searching these sources and to

provide them with high-quality code examples. However, these
techniques, based on clustering [23], [43], [45] or predictive
modeling [10], still suffer from high redundancy [10] and—as
we show later in the paper—poor run-time performance.

To cope with these limitations, we propose a new approach
for API usage patterns mining that builds upon concepts emerg-
ing from collaborative-filtering recommender systems [36].
The fundamental idea of these systems is to recommend to
users items that have been bought by similar users in similar
contexts. By considering API methods as products and client
code as customers, we reformulate the problem of usage
pattern recommendation in terms of a collaborative-filtering
recommender system. Informally, the question the proposed
system can answer is:

“Which API methods should this piece of client code
invoke, considering that it has already invoked these
other API methods?"

Implementing a collaborative-filtering recommender system
requires to assess the similarity of two customers, i.e., two
projects. Existing approaches assume that any two projects
using an API of interest are equally valuable sources of
knowledge. Instead, we postulate that not all projects are equal
when it comes to recommending usage patterns: a project that
is highly similar to the project currently being developed should
provide higher quality patterns than a highly dissimilar one.
Our recommender system attempts to narrow down the search
scope by considering only the projects that are the most similar
to the active project. Thus, methods that are typically used
conjointly by similar projects in similar contexts tend to be
recommended first.

We incorporate these ideas into a recommender system that
mines open-source software (OSS) repositories to provide
developers with API FunctiOn Calls and USage patterns:
FOCUS. Our approach represents mutual relationships between
projects using a 3D matrix and mines API usage from the most
similar projects.

We evaluated FOCUS on different datasets comprising 610
Java projects from GitHub and 3, 600 JAR archives from the
Maven Central Repository. In the evaluation, we simulate
different stages of a development process, by removing portions
of client code and assessing how FOCUS can recommend
snippets with API invocations to complete them. We find that

1050

2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)

1558-1225/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSE.2019.00109

(a) Initial version

(b) Final version

Fig. 1. Motivating example

FOCUS outperforms PAM, a state-of-the-art tool for API usage
patterns mining [10], with regards to success rate, accuracy,
and execution time.

This paper is organized as follows. Section II introduces a
motivating example and background notions. Our recommender
system for API mining, FOCUS, is introduced in Section III.
The evaluation is presented in Section IV, with the key results
being analyzed in Section V. Section VI discusses the threats to
validity. In Section VII, we present related work and conclude
the paper in Section VIII.

II. BACKGROUND

This section presents a motivating example for introducing
the problem addressed by this paper and the main components
of the proposed solution. Then, we introduce the main notions
underpinning our approach, mostly originating from Schafer
et al. [37] and Chen [4].

A. Motivating Example

The typical setting considered in the paper is as shown in
Fig. 1: (a) developer is implementing some method to satisfy the
requirements of the system being developed. In the specific case
shown in Fig. 1 (b), the findBoekrekeningen method queries
the available entities and retrieve those of type Boekrekening.
To this end, the Criteria API library1 is used.

Fig. 1 (a) depicts the situation where the development is at
an early stage and the developer already used some methods of
the chosen API to develop the required functionality. However,
she is not sure how to proceed from this point. In such cases,
different sources of information may be consulted, such as
StackOverflow, video tutorials, API documentation, etc. In this
paper, we propose an approach aiming at providing developers
with recommendations consisting of a list of API method calls
that should be used next, and with usage patterns that can be
used as a reference for completing the development of the
method being defined (e.g., code snippets that could support

1https://docs.oracle.com/javaee/6/tutorial/doc/gjivm.html

developers in completing the method definition with the framed
code in Fig. 1 (b)).

B. API Function Calls and Usage Patterns

A software project is a standalone source code unit that
performs a set of tasks. Furthermore, an API is an interface that
abstracts the functionalities offered by a project by hiding its
implementation details. This interface is meant to support reuse
and modularity [24], [32]. An API X built in an object-oriented
programming language (e.g., the Criteria API in Fig. 1)
consists of a set TX of public types (e.g., CriteriaBuilder and
CriteriaQuery). Each type in TX consists of a set of public
methods and fields that are available to client projects (e.g.,
the method createQuery of the type CriteriaQuery).

A method declaration consists of a name, a (possibly empty)
list of parameters, a return type, and a (possibly empty) body
(e.g., the method findBoekrekeningen in Fig. 1). Given a set of
declarations D in a project P , an API method invocation i is a
call made from a declaration d ∈ D to another declaration m.
Similarly, an API field access is an access to a field f ∈ F from
a declaration d in P . API method invocations MI and field
accesses FA in P form the set of API usages U = MI ∪FA.
Finally, an API usage pattern (or code snippet) is a sequence
(u1, u2, ..., un), ∀uk ∈ U [19].

C. Context-aware Collaborative Filtering

As stated by Schafer et al. [37] “Collaborative Filtering
(CF) is the process of filtering or evaluating items through the
opinions of other people.” In a CF system, a user who buys or
uses an item attributes a rating to it based on her experience
and perceived value. Therefore, a rating is the association of
a user and an item through a value in a given unit (usually in
scalar, binary, or unary form). The set of all ratings of a given
user is also known as a user profile [4]. Moreover, the set of all
ratings given in a system by existing users can be represented
in a so-called rating matrix, where a row represents a user and
a column represents an item.

The expected outcome of a CF system is a set of predicted
ratings (aka. recommendations) for a specific user and a subset
of items [37]. The recommender system considers the most
similar users (aka. neighbors) to the active user to suggest
new ratings. A similarity function simusr(ua, uj) computes
the weight of the active user profile ua against each of the user
profiles uj in the system. Finally, to suggest a recommendation
for an item i based on this subset of similar profiles, the CF
system computes a weighted average r(ua, i) of the existing
ratings, where r(ua, i) varies with the value of simusr(ua, uj)
obtained for all neighbors [4], [37].

Context-aware CF systems compute recommendations based
not only on neighbors’ profiles but also on the context where
the recommendation is demanded. Each rating is associated
with a context [4]. Therefore, for a tuple C modeling different
contexts, a context similarity metric simctx(ca, ci), for ca, ci ∈
C is computed to identify relevant ratings according to a
given context. Then, the weighted average is reformulated as
r(ua, i, ca) [4].

1051

III. PROPOSED APPROACH

To tackle the problem of recommending API function calls
and usage patterns, we leverage the wisdom of the crowd
and existing recommender system techniques. In particular,
we hypothesize that API calls and usages can be mined from
existing codebases, prioritizing the projects that are similar to
the one from where the recommendation is demanded.

More specifically, our tool FOCUS adopts a context-aware
CF technique to search for invocations from closely relevant
projects. This technique allows us to consider both project and
declaration similarities to recommend API function calls and
usage patterns. Following the terminology of recommender
systems, we treat projects as the enclosing contexts, method
declarations as users, and method invocations as items. Intu-
itively, we recommend a method invocation for a declaration in
a given project, which is analogous to recommending an item
to a user in a given context. For instance, the set of method
invocations and the usage pattern (cf. framed code in Fig. 1 (b))
recommended for the declaration findBoekrekeningen can be
obtained from a set of similar projects and declarations in a
codebase. The collaborative aspect of the approach enables
to extract recommendations from the most similar projects,
while the context-awareness aspect enables to narrow down
the search space further to similar declarations.

A. Architecture

The architecture of FOCUS is depicted in Fig. 2. To provide
its recommendations, FOCUS considers a set of OSS Repos-
itories 1 . The Code Parser 2 component extracts method
declarations and invocations from the source code or bytecode
of these projects. The Project Comparator, a subcomponent of
the Similarity Calculator 3 , computes the similarity between
projects in the repositories and the project under development.
Using the set of projects and the information extracted by the
Code Parser, the Data Encoder 4 component computes rating
matrices which are introduced later in this section. Afterwards,
the Declaration Comparator computes the similarities between
declarations. From the similarity scores, the Recommendation
Engine 5 generates recommendations, either as a ranked list
of API function calls using the API Generator, or as usage
patterns using the Code Builder, which are presented to the
developer. In the remainder of this section, we present in greater
details each of these components.

1) Code Parser: FOCUS relies on Rascal M3 [2], an inter-
mediate model that performs static analysis on the source code,
to extract method declarations and invocations from a set of

Fig. 2. Overview of the FOCUS architecture

projects. This model is an extensible and composable algebraic
data type that captures both language-agnostic and Java-specific
facts in immutable binary relations. These relations represent
program information such as existing declarations, method
invocations, field accesses, interface implementations, class
extensions, among others [2]. To gather relevant data, Rascal
M3 leverages the Eclipse JDT Core Component2 to build and
traverse the abstract syntax trees of the target Java projects.

In the context of FOCUS, we consider the data provided
by the declarations and methodInvocation relations of the M3

model. Both of them contain a set of pairs 〈v1, v2〉, where v1
and v2 are values representing locations. These locations are
uniform resource identifiers that represent artifact identities
(aka. logical locations) or physical pointers on the file system
to the corresponding artifacts (aka. physical locations). The
declarations relation maps the logical location of an artifact
(e.g., a method) to its physical location. The methodInvocation
relation maps the logical location of a caller to the logical
location of a callee. We refer the reader to a dedicated paper
for the technical details of the inference of Java M3 models [2].

Listing 1. Excerpt of the M3 model extracted from Fig. 1
m3.declarations = {
<|java+method://StandaardBoekrekeningService/findBoekrekeningen|,
|file:// ... /StandaardBoekrekeningService.java

(501,531,<17,4>,<33,5>)|>,
%[...]}
m3.methodInvocation = {
<|java+method://StandaardBoekrekeningService/findBoekrekeningen|,
|java+method://EntityManager/getCriteriaBuilder|>, [...]}

Listing 1 depicts an excerpt of the M3 model extracted from
the code presented in Fig. 1 (a). The declarations relation links
the logical location of the method findBoekrekeningen, to its
corresponding physical location in the file system. The method-
Invocation relation states that the getCriteriaBuilder method
of the EntityManager type is invoked by the findBoekrekeningen

method in the current project.
2) Data Encoder: Once method declarations and invocations

are extracted, FOCUS represents the relationships among them
using a rating matrix. For a given project, each row in the matrix
represents a method declaration and each column represents
a method invocation. A cell is set to 1 if the declaration in
the corresponding row contains the invocation in the column,
otherwise it is set to 0. For example, Fig. 3 shows the rating
matrix of a project with four declarations p1 � (d1, d2, d3, d4)
and four invocations (i1, i2, i3, i4).

⎛
⎜⎜⎜⎜⎝

i 1 i 2 i 3 i 4

d1 1 0 1 1
d2 0 1 1 0
d3 1 0 0 1
d4 0 1 0 0

⎞
⎟⎟⎟⎟⎠

Fig. 3. Rating matrix for a project with 4 declarations and 4 invocations

To capture the intrinsic relationships among various projects,
declarations, and invocations, we come up with a 3D context-
based rating matrix [21]. The third dimension of this matrix

2https://www.eclipse.org/jdt/core/

1052

1 1 0 0

0 1 0 1

0 0 1 1

1 0 0 1

1 0 1 1

0 1 1 0

1 0 0 1

0 1 0 0

0 0 1 1

0 0 1 1

1 0 0 1

? ? 1 1

Active project (pa)

Similar project (p1)

Similar project (p2)

w=simα(pa,p1)=0.8

w=simα(pa,p2)=0.3

Active declaration (da)

Similar declaration (d1)

Similar declaration (d2)

Fig. 4. 3D context-based rating matrix

represents a project, which is analogous to the so-called context
in context-aware CF systems. For example, Fig. 4 depicts three
projects P = (pa, p1, p2) represented by three slices with four
method declarations and four method invocations. Project p1
has already been introduced in Fig. 3 and for the sake of
readability, the column and row labels are removed from all
slices in Fig. 4. There, pa is the active project and it has an
active declaration. Active here means the artifact (project or
declaration), being considered or developed. Both p1 and p2
are complete projects similar to the active project pa. The
former projects (i.e., p1 and p2) are also called background
data since they are already available and serve as a base for the
recommendation process. In practice, the higher the number of
complete projects considered as background data, the higher
the probability to recommend relevant invocations.

3) Similarity Calculator: Exploiting the context-aware CF
technique, the presence of additional invocations is deduced
from similar declarations and projects. Given an active declara-
tion in an active project, it is essential to find the subset of the
most similar projects, and then the most similar declarations in
that set of projects. To compute similarities, we derive from [20]
a weighted directed graph that models the relationships among
projects and invocations. Each node in the graph represents
either a project or an invocation. If project p contains invocation
i, then there is a directed edge from p to i. The weight of
an edge p → i represents the number of times a project p
performs the invocation i. Fig. 5 depicts the graph for the
set of projects introduced in Fig. 4. For instance, pa has four
declarations and all of them invoke i4. As a result, the edge
pa → i4 has a weight of 4. In the graph, a question mark
represents missing information. For the active declaration in
pa, it is not known yet whether invocations i1 and i2 should
be included.

The similarity between two project nodes p and q is
computed by considering their feature sets [7]. Given that
p has a set of neighbor nodes (i1, i2, .., il), the feature set of
p is the vector

−→
φ = (φ1, φ2, .., φl), with φk being the weight

of node ik. This weight is computed as the term-frequency
inverse document frequency value, i.e., φk = fik ∗ log(|P |

aik
),

where fik is the weight of the edge p→ ik; |P | is the number

i2 i3

pa

?

p1

32

p2

2

1

i1

? 2

3

i4

4 2
3

Fig. 5. Graph representation of projects and invocations

of all considered projects; and aik is the number of projects
connected to ik. Eventually, the similarity between p and q

with their corresponding feature vectors
−→
φ = {φk}k=1,..,l and−→ω = {ωj}j=1,..,m is:

simα(p, q) =

∑n
t=1 φt × ωt√∑n

t=1(φt)2 ×
√∑n

t=1(ωt)2
(1)

The similarities among method declarations are calculated
using the Jaccard similarity index [15] as follows:

simβ(d, e) =
|F(d)⋂F(e)|
|F(d)⋃F(e)| (2)

where F(d) and F(e) are the sets of invocations made from
declarations d and e, respectively.

4) API Generator: This component, which is part of the
Recommendation Engine, is in charge of generating a ranked
list of API function calls. In Fig. 4, the active project pa already
includes three declarations, and the developer is working on
the fourth declaration, which corresponds to the last row of
the slice. pa has only two invocations, represented in the last
two columns of the matrix (i.e., cells filled with 1). The first
two cells are marked with a question mark (?), indicating that
it is unclear whether these two invocations should also be
added into pa. The recommendation engine attempts to predict
additional invocations for the active declaration by computing
the missing ratings using the following formula [4]:

rd,i,p = rd +

∑
e∈topsim(d)(Re,i,p − re) · simβ(d, e)∑

e∈topsim(d) simβ(d, e)
(3)

Eq. 3 is used to compute a score for the cell represent-
ing method invocation i, declaration d of project p, where
topsim(d) is the set of top similar declarations of d; simβ(d, e)
is the similarity between d and a declaration e, computed using
Eq. 2; rd and re are the mean ratings of d and e, respectively;
and Re,i,p is the combined rating of declaration d for i in all
similar projects, computed as follows [4]:

Re,i,p =

∑
q∈topsim(p) re,i,q · simα(p, q)∑

q∈topsim(p) simα(p, q)
(4)

where topsim(p) is the set of top similar projects of p;
and simα(p, q) is the similarity between p and a project q,
computed using Eq. 1. Eq. 4 implies that a higher weight
is given to projects with higher similarity. In practice, it is
reasonable since, given a project, its similar projects contain

1053

Fig. 6. Real source code recommended by FOCUS

more relevant API calls than less similar projects. Using Eq. 3
we compute all the missing ratings in the active declaration
and get a ranked list of invocations with scores in descending
order, which is then suggested to the developer.

5) Code Builder: This subcomponent is also part of the
Recommendation Engine, and it is responsible for recommend-
ing usage patterns to developers. From the ranked list, top-N
method invocations are used as a query to search the database
for relevant declarations. To limit the search scope, only the
most similar projects are considered. The Jaccard index is used
to compute similarities between the selected invocations and a
given declaration. For each query, we search for declarations
that contain as many invocations of the query as possible. Once
we identify the corresponding declarations we retrieve their
source code using the declarations relation of the Rascal M3

model. The resulting code snippet is then recommended to the
developer.

For the sake of illustration, we now present an example
of how FOCUS suggests real code snippets, considering the
declaration findBoekrekeningen in Fig. 1 (a) as input. The invo-
cations it contains are used together with the other declarations
in the current project as query to feed the Recommendation
Engine. The final outcome is a ranked list of real code snippets.
The top one, named findByIdentifier, is depicted in Fig. 6.
By carefully examining this code and the original one in
Fig. 1 (b), we see that although they are not exactly the
same, they indeed share several method calls and a common
intent: both exploit a CriteriaBuilder object to build, perform
a query and eventually get back some results. Furthermore, the
outcome of both declarations is of the List type. Interestingly,
compared to the original one, the recommended code appears
to be of higher quality since it includes a try/catch construct
to handle possible exceptions. Thus, the recommended code,
coupled with the corresponding list of function calls (i.e., get,
equal, where, select, etc.), provides the developer with helpful
directions on how to use the API at hand to implement the
desired functionality.

IV. EVALUATION

The goal of this study is to evaluate FOCUS, and compare
it with another state-of-the-art tool (PAM [10]), with the aim
of assessing its capability to recommend API usage patterns
to developers, while they are writing code. The quality focus
is twofold: studying the API recommendation accuracy and
completeness, as well as the time required by FOCUS and PAM
to provide a recommendation. The context consists of 610 Java
open source projects, and 3, 600 JAR archives from the Maven

Central repository.3 For the sake of reproducibility and ease of
reference, all artifacts used in the evaluation, together with the
tools are available online [22]. We choose PAM as a baseline
for comparison, as it has been shown to outperform [10] other
similar tools such as MAPO [45] and UP-Miner [43]. To
conduct the comparison with PAM, we leverage its original
source code made available online by its authors [9].

In the following, we detail our research questions, datasets,
evaluation methodology, and metrics.

A. Research Questions

Our research questions are as follows:

RQ1 To what extent is FOCUS able to provide accurate and
complete recommendations? This research question relates to
the capability of FOCUS to produce accurate and complete
results. Having too many false positives would end up being
counterproductive, whereas having too many false negatives
would mean that the tool is not able to provide recommenda-
tions in many cases where this is needed.

RQ2 What are the timing performances of FOCUS in building
its models and in providing recommendations? This research
question aims at assessing whether, from a timing point of
view, FOCUS—compared to PAM—could be used in practice.
We evaluate the time required by both tools to provide a
recommendation. We mainly focus on the recommendation
time because, while it is acceptable that the model training
phase is relatively slow (i.e., the model could be built offline),
the recommendation time has to be fast enough to make the
tool applicable in practice.

RQ3 How does FOCUS perform compared with PAM? Finally,
this research question directly compares the recommendation
capabilities of FOCUS and PAM.

B. Datasets

To answer our research questions, we relied on four different
datasets. The first dataset, SHL, has been assembled starting
from 5, 147 randomly selected Java projects retrieved from
GitHub via the Software Heritage archive [6]. To comply with
the requirements of PAM, we first restricted the dataset to
the list of projects that use at least one of the third-party
libraries listed in Table I. Most of them were used to assess
the performance of PAM [10]. Each row in Table I lists a third-
party library, the number of projects that depend on it, and
the number of classes that invoke methods of this library. To
comply with the requirements of FOCUS, we then restricted the
dataset to the list of projects containing at least one pom.xml,
as it eases the creation of the M3 models. We thus obtained
our first dataset consisting of 610 Java projects.

From SHL, we extracted a second dataset SHS consisting of
the 200 smallest (in size) projects of SHL.

As a third dataset, we randomly collected a set of 3, 600
JAR archives from the Maven Central repository, which we
name MVL. Through a manual inspection of MVL, we noticed

3https://mvnrepository.com

1054

TABLE I
EXCERPT OF THE THIRD-PARTY LIBRARIES USED BY DATASET SHL

Project Name # of Client Projects # of Client Classes

com.google.gson 51 337
io.netty 105 13,456
org.apache.camel 36 1,017
org.apache.hadoop 158 14,596
org.apache.lucene 15 397
org.apache.mahout 25 8,541
org.apache.wicket 44 3,360
org.drools 27 886
org.glassfish.jersey 105 3,811
org.hornetq 15 123
org.jboss.weld 39 1,875
org.jooq 16 243
org.jsoup 23 55
org.neo4j 28 4,983
org.restlet 19 326
org.springside 16 821
twitter4j 45 597

610 55,425

that many projects only differ in their version numbers (ant-
1.6.5.jar and ant-1.9.3.jar, for instance, are two versions of the
same project ant). These cases are interesting as we assume
two versions of the same project share many functionalities
[39]. The collaborative-filtering technique works well given that
highly similar projects exist, since it just “copies” invocations
from similar methods in the very similar projects (see Eq. 3 and
Eq. 4). However, a dataset containing too many similar projects
may introduce a bias in the evaluation. Thus, we decided to
populate one more dataset. Starting from MVL, we randomly
selected one version for every project and filtered out the other
versions. The removal resulted in a fourth dataset consisting
of 1, 600 projects, which we name MVS .

Three datasets, i.e., SHL, MVL and MVS are used to assess the
performance of FOCUS (RQ1). The smallest dataset SHS is
used to compare FOCUS and PAM (RQ2 and RQ3).

Eventually, the process of creating required metadata consists
of the following main steps:

• for each project in the dataset the corresponding Rascal
M3 model is generated;

• for each M3 model, the corresponding ARFF represen-
tations4 are generated in order to be used as input for
applying FOCUS and PAM during the actual evaluation
steps discussed in the next sections.

C. Study Methodology

Performing a user study has been accepted as the standard
method to validate an API usage recommendation tool [17],
[45]. While user studies are valuable, they are limited in the size
of the task a participant can conduct and are highly susceptible
to individual skills and subjectiveness. In this paper, to study
if FOCUS is applicable in real-world settings we perform a
different, offline evaluation, by simulating the behavior of a
developer working at different stages of a development project
on partial code snippets.

4https://www.cs.waikato.ac.nz/ml/weka/arff.html

More specifically, we consider a programmer who is devel-
oping a project p. To this end, some parts of p are removed
to mimic an actual development. Given an original project
p, the total number of declarations it contains is called Δ.
However, only δ declarations (δ < Δ) are used as input for
recommendation and the rest is discarded. In practice, this
corresponds to the situation when the developer already finished
δ declarations, and she is now working on the active declaration
da. For da, originally there are Π invocations, however only the
first π invocations (π < Π) are selected as query and the rest is
removed and saved as ground-truth data for future comparison.
In practice, δ is small at an early stage and increases over
the course of time. Similarly, π is small when the developer
just starts working on da. The two parameters δ, π are used
to stimulate different development phases. In particular, we
consider the following configurations.

Configuration C1.1 (δ = Δ/2− 1, π = 1): Almost the first
half of the declarations is used as testing data and the second
half is removed. The last declaration of the first half is selected
as the active declaration da. For da, only the first invocation
is provided as a query, and the rest is used as ground-truth
data which we call GT(p). This configuration mimics a scenario
where the developer is at an early stage of the development
process and, therefore, only limited context data is available
to feed the recommendation engine.

Configuration C1.2 (δ = Δ/2−1, π = 4): Similarly to C1.1,
almost the first half of the declarations is kept and the second
half is discarded. da is the last declaration of the first half of
declarations. For da, the first four invocations are provided as
query, and the rest is used as GT(p).

Configuration C2.1 (δ = Δ − 1, π = 1): The last method
declaration is selected as testing, i.e., da and all the remaining
declarations are used as training data (Δ− 1). In da, the first
invocation is kept and all the others are taken out as ground-
truth data GT(p). This represents the stage where the developer
almost finished implementing p.

Configuration C2.2 (δ = Δ − 1, π = 4): Similar to C2.1,
da is selected as the last method declaration, and all the
remaining declarations are used as training data (Δ− 1). The
only difference with C2.1 is that in da, the first four invocations
are used as query and all the remaining ones are used as GT(p).

When performing the experiments, we split a dataset into
two independent parts, namely a training set and a testing set.
In practice, the training set represents the OSS projects that
have been collected a priori. They are available at developers’
disposal, ready to be exploited for mining purposes. The testing
set represents the project being developed, or the active project.
This way, our evaluation mimics a real development scheme: the
system should produce recommendations for the active project
based on the data from a set of existing projects. We opt for
k-fold cross validation [16] as it is widely chosen to evaluate
machine learning models. Depending on the availability of
input data, the dataset with n elements is divided into k equal
parts, so-called folds. For each validation round, one fold is
used as testing data and the remaining k − 1 folds are used
as training data. For our evaluation, we select two values,

1055

i.e., k = 10 and k = n. The former corresponds to ten-fold
cross validation and the latter corresponds to leave-one-out
cross validation [44].

D. Evaluation Metrics

For a testing project p, the outcome of a recommendation
process is a ranked list of invocations, i.e., REC(p). It is our
firm belief that the ability to provide accurate invocations
is important in the context of software development. Thus,
we are interested in how well a system can recommend API
invocations that eventually match with those stored in GT(p).
To measure the performance of the recommender systems, i.e.,
PAM and FOCUS, we utilize two metrics, namely success rate
and accuracy [7]. Given a ranked list of recommendations,
a developer typically pays attention to the top-N items only.
Success rate and accuracy are computed by using N as the
cut-off value. Given that RECN (p) is the set of top-N items
and matchN (p) = GT (p)

⋂
RECN (p) is the set of items in

the top-N list that match with those in the ground-truth data,
then the metrics are defined as follows.

Success rate: Given a set of P testing projects, this metric
measures the rate at which a recommendation engine can return
at least a match among top-N recommended items for every
project p ∈ P .

success rate@N =
countp∈P (|matchN (p)| > 0)

|P | × 100%

(5)
where count() counts the number of times the boolean

expression given as parameter evaluates to true.
Accuracy: Precision and recall are employed to measure ac-

curacy [7]. Precision@N is the ratio of the top-N recommended
items belonging to the ground-truth dataset:

precision@N =
|matchN (p)|

N
(6)

and recall@N is the ratio of the ground-truth items being
found in the top-N items:

recall@N =
|matchN (p)|
|GT (p)| (7)

Recommendation time: As mentioned in RQ2, we measure
the time needed by both PAM and FOCUS to perform a
prediction on a given infrastructure, which is a laptop with
Intel Core i5-7200U CPU @ 2.50GHz × 4, 8GB RAM, and
Ubuntu 16.04.

V. RESULTS

RQ1: To what extent is FOCUS able to provide accurate and
complete recommendations?

To answer this research question, we use the dataset SHL

and vary the length of the input data for every testing project.
Two main configurations are taken into account, with two
sub-configurations for each as introduced in Section IV-C.
Table II shows the success rate for all the configurations. For
a small N , i.e., N = 1 (the developer expects a very brief
list of items) FOCUS is still able to provide matches. For
example, the success rates of C1.1 and C1.2 are 24.59% and
30.65%, respectively. When the cut-off value N is increased,

TABLE II
SUCCESS RATE FOR SHL , N = {1, 5, 10, 15, 20}

N
SHL

C1.1 C1.2 C2.1 C2.2

1 24.59 30.65 23.44 29.83
5 31.96 40.00 31.31 39.01
10 35.90 43.77 35.73 43.77
15 39.34 47.21 37.70 45.57
20 40.98 47.70 39.34 46.88

the corresponding success rates improve linearly. For example,
when N = 20, FOCUS obtains 40.98% success rate for
C1.1 and 47.70% for C1.2. By comparing the results obtained
for C1.1 and C1.2, we see that when more invocations are
incorporated into the query, FOCUS provides more precise
recommendations. In practice, this means that the accuracy of
recommendations improves with the maturity of the project.

We now consider the outcomes obtained for C2.1 and C2.2.
In these configurations, more background data is available for
recommendation. For C2.1 (δ = Δ−1, π = 1), the success rates
for the smallest values of N , i.e., N = 1 and N = 5 are 23.44%
and 31.31%, respectively. In other words, it improves with
N . The same trend can be observed with other cut-off values,
i.e., N = 10, 15, 20: the success rates for these settings increase
correspondingly. We notice the same pattern considering C2.1

and C2.2 together, or C1.1 and C1.2 together: if more invocations
are used as query, FOCUS suggests more accurate invocations.

Fig. 7 and Fig. 8 depict the precision and recall curves
(PRCs) for the above mentioned configurations by varying N
from 1 to 30. In particular, Fig. 7 represents the accuracy when
almost the first half of the declarations (δ = Δ/2− 1) together
with one (C1.1) and four invocations (C1.2) from the testing
declaration da are used as query. As a PRC close to the upper
right corner indicates a better accuracy [7], we see that the
accuracy of C1.2 is superior to that of C1.1. Similarly with
C2.1 and C2.2, as depicted in Fig. 8, the accuracy improves
substantially when the query contains more invocations. These
facts further confirm that FOCUS is able to recommend
more relevant invocations when the developer keeps coding.
This improvement is obtained since the similarity between
declarations can be better determined when more invocations
are available as comprehended in Eq. 4.

The results reported so far appear to be promising at the
first sight. However, by considering Table II, Fig. 7, and Fig. 8
together, we realize that both success rate and accuracy are
considerably low: The best success rate is 47.70% for C1.2

when N = 20, which means that more than half of the queries
do not get any matches at all. In this sense, it is necessary to
ascertain the cause of this outcome: Is FOCUS only capable of
generating such moderate recommendations, or is it because of
the data? Our intuition is that SHL is rather small in size, which
means the background data available for the recommendation
process is limited. Thus, to further validate the performance
of FOCUS, we perform additional experiments by considering
more data, using both MVL and MVS . For this evaluation, we

1056

Fig. 7. Precision and recall for C1.1 and C1.2 on SHL

Fig. 8. Precision and recall for C2.1 and C2.2 on SHL

just consider the case when only one invocation together with
other declarations are used as query, i.e., C1.1 and C2.1. This
aims at validating the performance of FOCUS, given that the
developer just finished only one invocation in da.

Table III depicts the success rate obtained for different
cut-off values using both datasets. The success rates for all
configurations are much better than those of SHL. The scores
are considerably high, even when N = 1, the success rates
obtained by C1.1 and C2.1 are 72.30% and 72.80%, respectively.
For MVS , the corresponding success rates are lower. However,
this is understandable since the set has less data compared to
MVL.

The PRCs for MVL and MVS are shown in Fig. 9 and Fig. 10,
respectively. We see that for MVL, a superior performance is
obtained by configuration C2.1, i.e., when more background
data is available for recommendation compared to C1.1. For MVS ,
we witness the same trend as with success rate: the difference
between C1.1 and C2.1 is negligible. Considering both Fig. 9
and Fig. 10, we observe that the overall accuracy for MVL is
much better than that of MVS . The maximum precision and recall

TABLE III
SUCCESS RATE FOR MVL AND MVS , N = {1, 5, 10, 15, 20}

N
MVL MVS

C1.1 C2.1 C1.1 C2.1

1 72.30 72.80 49.40 50.10
5 82.80 82.70 64.60 65.40
10 86.40 86.40 69.30 70.10
15 88.10 87.90 71.60 72.20
20 89.20 89.00 73.30 74.30

Fig. 9. Precision and recall for C1.1 and C2.1 on MVL

Fig. 10. Precision and recall for C1.1 and C2.1 on MVS

for MVL are 0.75 and 0.62, respectively. Whereas, the maximum
precision and recall for MVS are 0.52 and 0.36, respectively.
This further confirms the fact that with more similar projects,
FOCUS can provide better recommendations. Referring back
to the outcomes of SHL, we see that the performance on MVL

and MVS is improved substantially.
To sum up, we conclude that the performance of FOCUS

relies on the availability of background data. The system works
effectively given that more OSS projects are available for
recommendation. In practice, it is expected that we can crawl
as many projects as possible, and use them as background data
for the recommendation process.
RQ2: What are the timing performances of FOCUS in building
its models and in providing recommendations?

To measure the execution time of PAM and FOCUS, for
the very first attempt we ran both systems on the SHL dataset,
consisting of 610 projects. With PAM, for each testing project,
we combined the extracted query with all the other training
projects to produce a single ARFF file provided as input for the
recommendation process [10]. Nevertheless, we then realized
that the execution of PAM is very time-consuming. For instance,
for one fold containing 1 testing and 549 training projects (i.e.,
610/10 × 9 training folds) with 80MB in size, PAM takes
around 320 seconds to produce the final recommendations.
Instead, the corresponding execution time by FOCUS is quite
faster than PAM, around 1.80 seconds. Given the circumstances,
it is not feasible to run PAM on a large dataset.

Therefore, we decided to use the SHS dataset (consisting of
200 projects) for this purpose. For the experiments, we opt for
leave-one-out cross-validation [44], i.e., one project is used

1057

Fig. 11. Precision and recall for PAM and FOCUS using SHS .

as testing, and all the remaining 199 projects are used for
the training. The rationale behind the selection of this method
instead of ten-fold cross-validation is that we want to exploit
as much as possible the projects available as background data,
given a testing project. The validation was executed 200 times,
and we measured the time needed to finish the recommendation
process. On average, PAM requires 9 seconds to provide each
recommendation while FOCUS just needs 0.095 seconds, i.e.,
it is two orders of magnitude faster and suitable to be integrated
into a development environment.
RQ3: How does FOCUS perform compared with PAM?

For the reasons explained in RQ2, the comparison between
PAM and FOCUS has been performed on the SHS dataset.
FOCUS gains a better success rate than PAM does, i.e., 51.20%
compared to 41.60%. Furthermore, as depicted in Fig. 11, there
is a big gap between the PRCs for PAM and FOCUS, with the
one representing FOCUS closer to the upper right corner. This
implies that the accuracy obtained by FOCUS is considerably
superior to that of PAM.

A statistical comparison of PAM and FOCUS using Fisher’s
exact test [8] indicates that, for 1 ≤ N ≤ 20, FOCUS always
outperforms PAM: We achieved p-values < 0.001 (adjusted
using the Holm’s correction [13]) in all cases, with an Odds
Ratio between 2.21 and 3.71, and equal to 2.54 for N = 1. In
other words, FOCUS has over twice the odds of providing an
accurate recommendation than PAM.

It is worth noting that the overall accuracy of FOCUS
achieved and reported in this experiment is, although better than
that of PAM, still considerably low. Following the experiments
on MVL and MVS from RQ1, we believe that this attributes to
the limited background data available for the evaluation, since
we only consider 200 projects.

In summary, by considering both RQ2 and RQ3, we come
to the conclusion that FOCUS obtains a better performance in
comparison to PAM with regards to success rate, accuracy and
execution time. Lastly, since PAM takes considerable time to
produce the final recommendations, it might be impractical to
deploy PAM in a development environment.

VI. THREATS TO VALIDITY

The main threat to construct validity concerns the simulated
setting used to evaluate the approaches, as opposed to perform-
ing a user study. We mitigated this threat by introducing four

configurations that simulate different stages of the development
process. In a real development setting, however, the order
in which one writes statements might not fully reflect our
simulation. Also, in a real setting, there may be cases in
which a recommender is more useful, and cases (obvious
code completion) where it is less useful. This makes a further
evaluation involving developers highly desirable.

Threats to internal validity concern factors internal to our
study that could have influenced the results. One possible threat
can be seen through the results obtained for the datasets SHL

and SHS . As noted, these datasets exhibit lower precision/recall
with respect to MVL and MVS due to the limited size of the
training sets. However, these datasets were needed to compare
FOCUS and PAM due to the limited scalability of PAM.

The main threat to external validity is that FOCUS is
currently limited to Java programs. As stated in Section III,
however, FOCUS makes few assumptions on the underlying lan-
guage and only requires information about method declarations
and invocations to build the 3D rating matrix. This information
could be extracted from programs written in any object-oriented
programming language, and we wish to generalize FOCUS to
other languages in the future.

VII. RELATED WORK

In this section, we summarize related work about API usage
recommendation and relate our contributions to the literature.

A. API Usage Pattern Recommendation

Acharya et al. [1] present a framework to extract API patterns
as partial orders from client code. While this approach proposes
a representation for API patterns, suggestions regarding API
usage are still missing.

MAPO (Mining API usage Pattern from Open source
repositories) is a tool that mines API usage patterns from
client projects [45]. MAPO collect API usages from source
files, groups API methods into clusters. Then, it mines API
usage patterns from the clusters, ranks them according to
their similarity with the current development context, and
recommends code snippets to developers. Similarly, UP-
Miner [43] mines API usage patterns by relying on SeqSim,
a clustering strategy that reduces patterns redundancy and
improves coverage. Differently from FOCUS, these approaches
are based on clustering techniques, and consider all client
projects in the mining regardless of their similarity with the
current project.

Fowkes et al. introduce PAM (Probabilistic API Miner), a
parameter-free probabilistic approach to mine API usage pat-
terns [10]. PAM uses the structural Expectation-Maximization
(EM) algorithm to infer the most probable API patterns
from client code, which are then ranked according to their
probability. PAM outperforms both MAPO and UP-Miner
(lower redundancy and higher precision). We directly compare
FOCUS to PAM in Section IV.

Niu et al. extract API usage patterns using API class or
method names as queries [23]. They rely on the concept of
object usage (method invocations on a given API class) to

1058

extract patterns. The approach of Niu et al. outperforms UP-
Miner and Codota,5, a commercial recommendation engine,
in terms of coverage, performance, and ranking relevance.
In contrast, FOCUS relies on context-aware CF techniques—
which favors recommendations from similar projects and uses
the whole development context to query API method calls.

The NCBUP-miner (Non Client-based Usage Patterns) [35]
is a technique that identifies unordered API usage patterns
from the API source code, based on both structural (methods
that modify the same object) and semantic (methods that
have the same vocabulary) relations. The same authors also
propose MLUP [34], which is based on vector representation
and clustering, but in this case client code is also considered.

DeepAPI [12] is a deep-learning method used to generate
API usage sequences given a query in natural language. The
learning problem is encoded as a machine translation problem,
where queries are considered the source language and API
sequences the target language. Only commented methods are
considered during the search. The same authors [11] present
CODEnn (COde-Description Embedding Neural Network),
where, instead of API sequences, code snippets are retrieved to
the developer based on semantic aspects such as API sequences,
comments, method names, and tokens.

With respect to the aforementioned approaches, FOCUS uses
CF techniques to recommend and rank API method calls and
usage patterns from a set of similar projects. In the end, not
only relevant API invocations are recommended, but also code
snippets are returned to the developer as usage examples.

B. API-Related Code Search Approaches

Strathcona [14] is a recommender system used to suggest
API usage. It is an Eclipse plug-in that extracts the structural
context of code and uses it as a query to request a set of code
examples from a remote repository. Six heuristics (associated
to class inheritance, method calls, and field types) are defined
to perform the match. Similarly, Buse and Weimer [3] propose
a technique for synthesizing API usage examples for a given
data type. An algorithm based on data-flow analysis, k-medoids
clustering and pattern abstraction is designed. Its outcome is a
set of syntactically correct and well-typed code snippets where
example length, exception handling, variables initialization and
naming, and abstract uses are considered.

Moreno et al. [17] introduce MUSE (Method USage Exam-
ples), an approach designed for recommending code examples
related to a given API method. MUSE extracts API usages
from client code, simplifies code examples with static slicing,
and detects clones to group similar snippets. It also ranks
examples according to certain properties (i.e., reusability,
understandability, and popularity) and documents them.

SWIM (Synthesizing What I Mean) [28] seeks API structured
call sequences (control and data-flows are considered), and then
synthesizes API-related code snippets according to a query
in natural language. The underlying learning model is also
built with the EM algorithm. Similarly, Raychev et al. [30]

5https://www.codota.com/

propose a code completion approach based on natural language
processing, which receives as input a partial program and
outputs a set of API call sequences filling the gaps of the input.
Both invocations and invocation arguments are synthesized
considering multiple types of an API.

Thummalapenta and Xie propose SpotWeb [40], an approach
that provides starting points (hotspots) for understanding a
framework, and highlights where examples finding could be
more challenging (coldspots). Other tools exploit StackOver-
flow discussions to suggest context-specific code snippets and
documentation [5], [25], [26], [27], [29], [31], [38], [41].

VIII. CONCLUSIONS

In this paper, we introduced FOCUS, a context-aware
collaborative-filtering system to assist developers in selecting
suitable API function calls and usage patterns. To validate the
performance of FOCUS, we conducted a thorough evaluation
on different datasets consisting of GitHub and Maven open
source projects. The evaluation was twofold. First, we examined
whether the system is applicable to real-world settings by
providing developers with useful recommendations as they
are programming. Second, we compared FOCUS with a well-
established baseline, i.e., PAM, with the aim of showcasing the
superiority of our proposed approach. Our results show that
FOCUS recommends API calls with high success rates and
accuracy. Compared to PAM, FOCUS works both effectively
and efficiently as it can produce more accurate recommen-
dations in a shorter time. The main advantage of FOCUS
is that it can recommend real code snippets that match well
with the development context. In contrast with several existing
approaches, FOCUS does not depend on any specific set of
libraries and just needs OSS projects as background data to
generate API function calls. Lastly, FOCUS also scales well
with large datasets by using the collaborative-filtering technique
that helps sweep irrelevant items, thus improving efficiency.
With these advantages, we believe that FOCUS is suitable
for supporting developers in real-world settings. For future
work, we plan to conduct a user study to thoroughly study
the system’s performance. Moreover, we will embed FOCUS
directly into the Eclipse IDE.

ACKNOWLEDGMENT

The research described has been carried out as part of the
CROSSMINER Project, which has received funding from the
European Union’s Horizon 2020 Research and Innovation
Programme under grant agreement No. 732223. Moreover,
the authors would like to thank Claudio Di Sipio for his hard
work on supporting the evaluation of FOCUS, and Morane
Gruenpeter for her hard work on collecting the dataset from
the Software Heritage archive.

REFERENCES

[1] M. Acharya, T. Xie, J. Pei, and J. Xu, “Mining API Patterns As Partial
Orders from Source Code: From Usage Scenarios to Specifications,” in
6th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on The Foundations of Software
Engineering. New York: ACM, 2007, pp. 25–34.

1059

[2] B. Basten, M. Hills, P. Klint, D. Landman, A. Shahi, M. J. Steindorfer,
and J. J. Vinju, “M3: A General Model for Code Analytics in Rascal,”
in 1st International Workshop on Software Analytics. Piscataway: IEEE,
2015, pp. 25–28.

[3] R. P. L. Buse and W. Weimer, “Synthesizing API Usage Examples,” in
34th International Conference on Software Engineering. Piscataway:
IEEE, 2012, pp. 782–792.

[4] A. Chen, “Context-Aware Collaborative Filtering System: Predicting the
User’s Preference in the Ubiquitous Computing Environment,” in First
International Conference on Location- and Context-Awareness. Berlin,
Heidelberg: Springer, 2005, pp. 244–253.

[5] J. Cordeiro, B. Antunes, and P. Gomes, “Context-Based Recommendation
to Support Problem Solving in Software Development,” in Third Interna-
tional Workshop on Recommendation Systems for Software Engineering.
Piscataway: IEEE, 2012, pp. 85–89.

[6] R. Di Cosmo and S. Zacchiroli, “Software Heritage: Why and How to
Preserve Software Source Code,” in 14th International Conference on
Digital Preservation, Kyoto, 2017, pp. 1–10.

[7] T. Di Noia, R. Mirizzi, V. C. Ostuni, D. Romito, and M. Zanker, “Linked
Open Data to Support Content-based Recommender Systems,” in 8th
International Conference on Semantic Systems. New York: ACM, 2012,
pp. 1–8.

[8] R. A. Fisher, “Confidence limits for a cross-product ratio,” Australian
Journal of Statistics, 1962.

[9] J. Fowkes and C. Sutton, “PAM: Probabilistic API Miner,” https://github.
com/mast-group/api-mining, last access 24.08.2018.

[10] ——, “Parameter-free Probabilistic API Mining Across GitHub,” in 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering. New York: ACM, 2016, pp. 254–265.

[11] X. Gu, H. Zhang, and S. Kim, “Deep Code Search,” in 40th International
Conference on Software Engineering. New York: ACM, 2018, pp. 933–
944.

[12] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep API Learning,” in 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering. New York: ACM, 2016, pp. 631–642.

[13] S. Holm, “A simple sequentially rejective Bonferroni test procedure,”
Scandinavian Journal on Statistics, 1979.

[14] R. Holmes and G. C. Murphy, “Using Structural Context to Recommend
Source Code Examples,” in 27th International Conference on Software
Engineering. New York: ACM, 2005, pp. 117–125.

[15] P. Jaccard, “The Distribution of the Flora in the Alpine Zone,” New
Phytologist, vol. 11, no. 2, pp. 37–50, 1912.

[16] R. Kohavi, “A Study of Cross-validation and Bootstrap for Accuracy
Estimation and Model Selection,” in 14th International Joint Conference
on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers
Inc., 1995, pp. 1137–1143.

[17] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, and A. Marcus, “How
Can I Use This Method?” in 37th International Conference on Software
Engineering. Piscataway: IEEE, 2015, pp. 880–890.

[18] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns, “What Makes a Good
Code Example?: A Study of Programming Q&A in StackOverflow,”
in 28th IEEE International Conference on Software Maintenance.
Piscataway: IEEE, 2012, pp. 25–34.

[19] A. T. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen, “Statistical
Learning Approach for Mining API Usage Mappings for Code Migration,”
in 29th ACM/IEEE International Conference on Automated Software
Engineering. New York: ACM, 2014, pp. 457–468.

[20] P. T. Nguyen, J. Di Rocco, R. Rubei, and D. Di Ruscio, “CrossSim:
Exploiting Mutual Relationships to Detect Similar OSS Projects,” in
2018 44th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), Aug 2018, pp. 388–395.

[21] P. T. Nguyen, J. Di Rocco, and D. Di Ruscio, “Knowledge-aware
Recommender System for Software Development,” in Proceedings of
the Workshop on Knowledge-aware and Conversational Recommender
Systems 2018 co-located with 12th ACM RecSys, KaRS@RecSys 2018,
Vancouver, Canada, October 7, 2018., 2018, pp. 16–22.

[22] P. T. Nguyen, J. Di Rocco, D. Di Ruscio, L. Ochoa, T. Degueule, and
M. Di Penta, “crossminer/focus: Icse19-artifact-evaluation,” Jan. 2019.
[Online]. Available: https://doi.org/10.5281/zenodo.2550379

[23] H. Niu, I. Keivanloo, and Y. Zou, “API Usage Pattern Recommendation
for Software Development,” Journal of Systems and Software, vol. 129,
no. C, pp. 127–139, 2017.

[24] D. L. Parnas, “Information Distribution Aspects of Design Methodol-
ogy,” Departement of Computer Science, Carnegie Mellon University,
Pittsburgh, Tech. Rep., 1971.

[25] L. Ponzanelli, A. Bacchelli, and M. Lanza, “Leveraging Crowd Knowl-
edge for Software Comprehension and Development,” in 17th European
Conference on Software Maintenance and Reengineering. Washington:
IEEE, 2013, pp. 57–66.

[26] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza, “Mining
StackOverflow to Turn the IDE into a Self-confident Programming
Prompter,” in 11th Working Conference on Mining Software Repositories.
New York: ACM, 2014, pp. 102–111.

[27] L. Ponzanelli, S. Scalabrino, G. Bavota, A. Mocci, R. Oliveto,
M. Di Penta, and M. Lanza, “Supporting Software Developers with
a Holistic Recommender System,” in 39th International Conference on
Software Engineering. Piscataway: IEEE, 2017, pp. 94–105.

[28] M. Raghothaman, Y. Wei, and Y. Hamadi, “SWIM: Synthesizing
What I Mean: Code Search and Idiomatic Snippet Synthesis,” in 38th
International Conference on Software Engineering. New York: ACM,
2016, pp. 357–367.

[29] M. Rahman, S. Yeasmin, and C. Roy, “Towards a Context-Aware IDE-
Based Meta Search Engine for Recommendation about Programming
Errors and Exceptions,” in Conference on Software Maintenance, Reengi-
neering, and Reverse Engineering. Piscataway: IEEE, 2014, pp. 194–203.

[30] V. Raychev, M. Vechev, and E. Yahav, “Code Completion with Statistical
Language Models,” in 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation. New York: ACM, 2014, pp.
419–428.

[31] P. C. Rigby and M. P. Robillard, “Discovering Essential Code Elements in
Informal Documentation,” in 35th International Conference on Software
Engineering. Piscataway: IEEE, 2013, pp. 832–841.

[32] M. P. Robillard, “What Makes APIs Hard to Learn? Answers from
Developers,” IEEE software, vol. 26, no. 6, pp. 27–34, 2009.

[33] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford,
“Automated API Property Inference Techniques,” IEEE Transactions on
Software Engineering, vol. 39, no. 5, pp. 613–637, 2013.

[34] M. A. Saied, O. Benomar, H. Abdeen, and H. Sahraoui, “Mining Multi-
level API Usage Patterns,” in 22nd International Conference on Software
Analysis, Evolution, and Reengineering. Piscataway: IEEE, 2015, pp.
23–32.

[35] M. A. Saied, H. Abdeen, O. Benomar, and H. Sahraoui, “Could We
Infer Unordered API Usage Patterns Only Using the Library Source
Code?” in 23rd International Conference on Program Comprehension.
Piscataway: IEEE, 2015, pp. 71–81.

[36] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based Collaborative
Filtering Recommendation Algorithms,” in 10th International Conference
on World Wide Web. New York: ACM, 2001, pp. 285–295.

[37] J. B. Schafer, D. Frankowski, J. L. Herlocker, and S. Sen, “Collaborative
filtering recommender systems,” in The Adaptive Web, Methods and
Strategies of Web Personalization, 2007, pp. 291–324.

[38] W. Takuya and H. Masuhara, “A Spontaneous Code Recommendation
Tool Based on Associative Search,” in 3rd International Workshop on
Search-Driven Development: Users, Infrastructure, Tools, and Evaluation.
New York: ACM, 2011, pp. 17–20.

[39] C. Teyton, J. Falleri, and X. Blanc, “Automatic discovery of function
mappings between similar libraries,” in 20th Working Conference on
Reverse Engineering, WCRE 2013, Koblenz, Germany, October 14-17,
2013, 2013, pp. 192–201.

[40] S. Thummalapenta and T. Xie, “SpotWeb: Detecting Framework Hotspots
and Coldspots via Mining Open Source Code on the Web,” in 23rd
IEEE/ACM International Conference on Automated Software Engineering.
Washington: IEEE, 2008, pp. 327–336.

[41] C. Treude and M. P. Robillard, “Augmenting API Documentation with
Insights from Stack Overflow,” in 38th International Conference on
Software Engineering. New York: ACM, 2016, pp. 392–403.

[42] G. Uddin and M. P. Robillard, “How API Documentation Fails,” IEEE
Software, vol. 32, no. 4, pp. 68–75, 2015.

[43] J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie, and D. Zhang, “Mining
Succinct and High-coverage API Usage Patterns from Source Code,” in
10th Working Conference on Mining Software Repositories. Piscataway:
IEEE, 2013, pp. 319–328.

[44] T.-T. Wong, “Performance Evaluation of Classification Algorithms by
K-fold and Leave-one-out Cross Validation,” Pattern Recognition, vol. 48,
no. 9, pp. 2839–2846, 2015.

[45] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “MAPO: Mining and
Recommending API Usage Patterns,” in 23rd European Conference on
Object-Oriented Programming. Berlin, Heidelberg: Springer, 2009, pp.
318–343.

1060

	I API Function Calls and Usage Patterns Recommendation
	Introduction
	Background
	Proposed Approach
	Evaluation
	Results
	Threats to Validity
	Related Work
	Conclusion

	II API Evolution and Migration
	Introduction
	State of the Art
	Maracas: A Framework for API Analysis and Migration
	Case Studies
	Conclusion

	III Satisfaction of CROSSMINER Requirements

