
Project Number 732223

D7.7 Developer Activity Monitoring - Final Version

Version 1.0
22 December 2018

Final

Public Distribution

FrontEndART

Project Partners: Athens University of Economics & Business, Bitergia, Castalia Solutions,
Centrum Wiskunde & Informatica, Eclipse Foundation Europe, Edge Hill
University, FrontEndART, OW2, SOFTEAM, The Open Group, University of
L′Aquila, University of York, Unparallel Innovation

Every effort has been made to ensure that all statements and information contained herein are accurate, however the
CROSSMINER Project Partners accept no liability for any error or omission in the same.

© 2018 Copyright in this document remains vested in the CROSSMINER Project Partners.

D7.7 Developer Activity Monitoring - Final Version

Project Partner Contact Information

Athens University of Economics & Business Bitergia
Diomidis Spinellis José Manrique Lopez de la Fuente
Patision 76 Calle Navarra 5, 4D
104-34 Athens 28921 Alcorcón Madrid
Greece Spain
Tel: +30 210 820 3621 Tel: +34 6 999 279 58
E-mail: dds@aueb.gr E-mail: jsmanrique@bitergia.com
Castalia Solutions Centrum Wiskunde & Informatica
Boris Baldassari Jurgen J. Vinju
10 Rue de Penthièvre Science Park 123
75008 Paris 1098 XG Amsterdam
France Netherlands
Tel: +33 6 48 03 82 89 Tel: +31 20 592 4102
E-mail: boris.baldassari@castalia.solutions E-mail: jurgen.vinju@cwi.nl
Eclipse Foundation Europe Edge Hill University
Philippe Krief Yannis Korkontzelos
Annastrasse 46 St Helens Road
64673 Zwingenberg Ormskirk L39 4QP
Germany United Kingdom
Tel: +33 62 101 0681 Tel: +44 1695 654393
E-mail: philippe.krief@eclipse.org E-mail: yannis.korkontzelos@edgehill.ac.uk
FrontEndART OW2 Consortium
Rudolf Ferenc Cedric Thomas
Zászló u. 3 I./5 114 Boulevard Haussmann
H-6722 Szeged 75008 Paris
Hungary France
Tel: +36 62 319 372 Tel: +33 6 45 81 62 02
E-mail: ferenc@frontendart.com E-mail: cedric.thomas@ow2.org
SOFTEAM The Open Group
Alessandra Bagnato Scott Hansen
21 Avenue Victor Hugo Rond Point Schuman 6, 5th Floor
75016 Paris 1040 Brussels
France Belgium
Tel: +33 1 30 12 16 60 Tel: +32 2 675 1136
E-mail: alessandra.bagnato@softeam.fr E-mail: s.hansen@opengroup.org
University of L′Aquila University of York
Davide Di Ruscio Dimitris Kolovos
Piazza Vincenzo Rivera 1 Deramore Lane
67100 L′Aquila York YO10 5GH
Italy United Kingdom
Tel: +39 0862 433735 Tel: +44 1904 325167
E-mail: davide.diruscio@univaq.it E-mail: dimitris.kolovos@york.ac.uk
Unparallel Innovation
Bruno Almeida
Rua das Lendas Algarvias, Lote 123
8500-794 Portimão
Portugal
Tel: +351 282 485052
E-mail: bruno.almeida@unparallel.pt

Page ii Version 1.0
Confidentiality: Public Distribution

22 December 2018

D7.7 Developer Activity Monitoring - Final Version

Table of Contents

1 Introduction 2

2 Technical documentation 3

2.1 Scenarios . 3

2.1.1 Detection of Process Metrics . 3

2.1.2 Usage of Process Metrics . 3

3 Implementation 5

3.1 Eclipse IDE Event Detection . 5

3.1.1 Types and Properties of Recorded Events . 6

3.1.2 Categorization of Event Related Components . 7

3.2 Eclipse IDE Event Preprocessing . 8

3.2.1 Representation and Event Storing Logic . 8

3.2.2 Local Resource Management and Further Optimization 13

3.3 Computation of Process Metrics . 14

3.3.1 Basic Metrics . 15

3.3.2 Aggregation strategies . 17

3.3.3 Calculated Metrics . 18

3.3.4 Sending metrics to the CROSSMINER server . 23

4 Developer Activity Monitoring Control 26

4.1 Documentation . 27

4.2 Changing Set of Detected Metrics . 27

4.3 Enable and Disable Event’s Collection . 28

4.4 Parameterized Events . 28

5 Conclusion 30

5.1 Technical requirements . 30

5.2 Use case requirements . 30

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page iii

D7.7 Developer Activity Monitoring - Final Version

Document Control
Version Status Date

0.5 Initial version 29 November 2018
0.8 Draft ready for internal review 3 December 2018
0.9 First pass corrections 19 December 2018
1.0 Final version 22 December 2018

Page iv Version 1.0
Confidentiality: Public Distribution

22 December 2018

D7.7 Developer Activity Monitoring - Final Version

Executive Summary

This document presents deliverable D7.7 (Developer Activity Monitoring - Final Version) of the
CROSSMINER project. The deliverable is the final implementation of the Developer Activity Moni-
toring features, implemented in task T7.2 of WP7 as part of the CROSSMINER Eclipse IDE Plug-in.
Developer activity monitoring collects information on how the developers use the IDE during their
development activity in general, and how they use the features of the CROSSMINER Eclipse IDE
Plug-in. Then it calculates process related metrics and sends them to the CROSSMINER server.

The deliverable covers 100% of the developer activity monitoring related technology and about 90%
of the related use case requirements defined in deliverable D1.1 (Project Requirements).

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 1

D7.7 Developer Activity Monitoring - Final Version

1 Introduction

Figure 1 shows how the CROSSMINER Eclipse IDE Plug-in is connected to the CROSSMINER
platform. The plug-in implements the Developer Activity Monitoring features and it is connected to
the CROSSMINER server through the common CROSSMINER API. In this deliverable, we present
the implementation of the Developer Activity Monitoring features in detail. These features enable
the user to go through the whole process of measuring user activity: send the data to the server and
use the captured metric values.

Section 2 gives an overview of the scenarios associated with the Developer Activity Monitoring
features. We present the details of the implementation in Section 3. Section 5 links the current
implementation status to the project requirements.

Figure 1: Location of the Integrated Development Environment in the CROSSMINER platform

Page 2 Version 1.0
Confidentiality: Public Distribution

22 December 2018

D7.7 Developer Activity Monitoring - Final Version

2 Technical documentation

One of the main functionalities of the CROSSMINER Eclipse IDE Plug-in is to monitor and collect
data on the developers’ activity during the development process, then send the collected data to
the CROSSMINER server for further processing. The server can calculate high-level metrics of
the development process, and the Web-based Dashboard is able to show calculated metric values to
developers. Users are able to authenticate themselves, after which they will be able to configure their
own metrics set, and enable the server to compute the information they are interested in.

2.1 Scenarios

There are two general scenarios concerning the Developer Activity Monitoring logic implemented in
the CROSSMINER Eclipse IDE Plug-in. These encapsulate the detection and use of the metrics. The
first scenario shows how events and metric values are detected, calculated and stored. In the second
scenario, the developer uses a specific model based on the captured low-level metrics to evaluate
the system in development. Note, that in the second scenario the CROSSMINER Eclipse IDE Plug-
in relies on the features of the Web-based Dashboard by means the plug-in provides the user with
a link that points to the dashboard page which presents the metrics to the user. We use integration
services, described in D7.6: IDE Integration Services (Final Version), to send metrics related data to
the CROSSMINER server.

2.1.1 Detection of Process Metrics

The main steps of this scenario are the recording of developer interactions (events), computing pro-
cess related metrics, and sending them to the CROSSMINER server for further processing.

We show the components implementing these steps and their interaction in Figure 2. First, the
CROSSMINER Eclipse IDE Plug-in collects events from Eclipse which are stored in a local database
(cf. “1: monitor user activity” in Figure 2). Note, that the current implementation provides a graph-
ical interface to the users where they can view and query the locally stored event chain. Please note
that this GUI is only used for debugging purposes and will not be present in the final version of the
CROSSMINER Eclipse IDE Plug-in. Then, the metrics are computed from the stored event chain (cf.
“2: compute” in Figure 2). Finally, the metrics and some metadata are sent to the CROSSMINER
server (cf. “3: send project id, . . . ” in Figure 2). The metadata includes a hashed user ID; it is used
to enable the server to recognize if two sets of data originate from the same source (user) but with-
out allowing the server to determine the exact identity of the user. A one-way cryptographic hash
function will be used for this purpose that is unfeasible to invert.

2.1.2 Usage of Process Metrics

There are several ways to use process related metrics to guide developers (see an example in Fig-
ure 3). From the developer’s point of view, the Web-based Dashboard has to be prepared by setting

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 3

D7.7 Developer Activity Monitoring - Final Version

Figure 2: Overview of Detection Scenario for Using the CROSSMINER Eclipse IDE Plug-in

up a model and collecting necessary metrics. Next, the developer can query the evaluation of a com-
ponent, such as a library. As the metrics-based evaluation is done by the Web-based Dashboard, the
CROSSMINER Eclipse IDE Plug-in requests for the proper URL, and redirects the developer to the
prepared page of the dashboard.

Figure 3: Overview of Usage Scenario for Using the CROSSMINER Eclipse IDE Plug-in

Page 4 Version 1.0
Confidentiality: Public Distribution

22 December 2018

D7.7 Developer Activity Monitoring - Final Version

3 Implementation

The three main steps of the Developer Activity Monitoring process executed on the client side are
shown in Figure 4. First, the CROSSMINER Eclipse IDE Plug-in collects several events from dif-
ferent components of Eclipse to cover all aspects of the development. Next, these events are stored
in a local database. We chose OrientDB1; it is a graph-based database that fits into our storage and
computation logic, eases the implementation of various metric computations, and has an appropriate
license. Finally, the stored information is used to calculate low-level metrics, which will then be sent
to the CROSSMINER Server.

Figure 4: Developer Activity Monitoring Process and its components in the CROSSMINER Eclipse
IDE Plug-in

3.1 Eclipse IDE Event Detection

The CROSSMINER Eclipse IDE Plug-in collects several types of events of the Eclipse IDE. One of
the most important attributes of choosing the events was to observe the users’ activities from different
aspects. The events have been categorized; the resulting groups included IDE events, Plug-in related
events, UI events, Project and Workspace related events.

1https://orientdb.com/

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 5

https://orientdb.com/

D7.7 Developer Activity Monitoring - Final Version

3.1.1 Types and Properties of Recorded Events

3.1.1.1 Document event The Document event type is based on the
org.eclipse.jface.text.DocumentEvent class and used to detect all keypress events in
the editor as well as to store affected files. The event is called after 10 button presses or after 10 ms,
doing so we are able to reduce the size of the database. Properties of the event type includes count,
timestamp and type, and it is connected to the affected file. This event type is useful, for example, to
gather information on the user’s typing frequency.

3.1.1.2 Project Structure Build event This is a special event that is in charge of mapping the
hierarchy of the project. It creates the graph representation of the project in the database. It is called
when we open Eclipse or open a project.

3.1.1.3 Idle event When there is no new event in the database for a pre-set amount of time we
assume that to indicate the user is not using the IDE.

3.1.1.4 Part event The Part event type is based on the org.eclipse.ui.IPartListener2
interface. It stores information about the life-cycle of given parts of the Eclipse application, e. g. ac-
tivating, deactivating, and closing. The event has a timestamp and a type property, i. e. describing the
behaviour of the given part, and is connected to the affected part. This event enables the reporting of
Eclipse parts that are active or most frequently used.

3.1.1.5 Window event The Window event type is based on the
org.eclipse.ui.IWindowListener interface. It stores information about the life-
cycle of Eclipse windows in the same way as the Part event handles information about the parts.
This event also has timestamp and type properties. It provides, for example, to check which parts of
Eclipse application are active or most frequently used.

3.1.1.6 Eclipse close event This event type is based on the
org.eclipse.ui.IWorkbenchListener interface. As this is the last event when the
eclipse is shutting down, we use it as a milestone capturing events between two Eclipse application
launches. It has a timestamp attribute.

3.1.1.7 Launch event The Launch event type is based on the
org.eclipse.debug.core.ILaunchListener interface and stores information about
code building and launching. The event has a timestamp and contains information about the type
of launch mode. For example, the event captures whether a build was started in debugging, test or
normal mode.

Page 6 Version 1.0
Confidentiality: Public Distribution

22 December 2018

D7.7 Developer Activity Monitoring - Final Version

3.1.1.8 Resource element event The Resource element event type is based on the
org.eclipse.ui.texteditor.IElementStateListener interface. We use it to cap-
ture actions on files, such as save and delete. The event has a timestamp and a type property and
connects to the affected file. Furthermore, we plan to use this event type to collect information on the
refactoring process.

3.1.1.9 Class path event The Class path event type is based on the
org.eclipse.jdt.core.IElementChangedListener interface. Classpath addi-
tions and removals can be captured by this type of event. The event has timestamp and type
properties. This event type can be used to check the ratio between manual and CROSSMINER
Eclipse IDE Plug-in indicated library changes.

3.1.1.10 CROSSMINER events The CROSSMINER events are generated when CROSSMINER
Eclipse IDE Plug-in features used and are planned to be used to calculate plug-in feature usage
metrics.

3.1.2 Categorization of Event Related Components

Event detection requires additional, non-event resources to be stored in connection to the events.
These resources are important for the grouping of events and contain extra information for met-
ric calculation. This additional information enables us to examine events in different scales of the
project.

3.1.2.1 File Abstract representation of the Eclipse’s IFile resources (e. g. Text Editor input). It
helps the CROSSMINER Eclipse IDE Plug-in to capture files affected by events and, in later stages
of the development, enables the calculation of metrics associated with file usage in the project. This
resource stores the name of the File.

3.1.2.2 Part The Parts represent different parts of the Eclipse application. It enables the CROSS-
MINER Eclipse IDE Plug-in to track the most active parts of the Eclipse application and represents
the basis for grouping different types of events. Is stores the title of the Part.

3.1.2.3 Window The windows represent the parent Eclipse application window, and it can also
be used to group items.

3.1.2.4 Package The Package will represent the Package, and will be connected to the File, Pack-
age or Project items representing the package structure.

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 7

D7.7 Developer Activity Monitoring - Final Version

3.1.2.5 Project The projects will represent the projects, and will be connected to the File or
Package items representing the representing the project structure.

3.2 Eclipse IDE Event Preprocessing

The events and items are represented in a graph database as a graph. Every single event and resource
is a vertex in this graph. The edges of the graph represent relations between the connected events and
items.

3.2.1 Representation and Event Storing Logic

In the CROSSMINER Eclipse IDE Plug-in, the event handling system is based on the
EventManager class; all event listeners call this class to process the given event. The
EventManager is responsible to send events to the Gremlin Adapter. The EventManager
can also filter event types before their submission to the database, and thus reduce database workload.

All of the collected events have their own event classes which are inherited from the Event class.
Every event class stores information about the event and implements a toNode() method which
describes the way it can be inserted into the database. All of these event classes are processed by the
EventManager, which sends them to the Gremlin Adapter. Moreover the EventManager
class is responsible for the subscription to the selected set of event listeners.

The DatabaseManager class implements the client database connection. The actual implementa-
tion uses the OrientDB1 database. As we are using Gremlin for communication with the DBMS, the
actual database system can be replaced by different graph database given that it implements the Tin-
kerPop™2 interface. The DatabaseManager is responsible for creating the database connection
and communicate with the Gremlin Adapter. Although all event class objects can connect them-
selves to their local resources, the Gremlin Adapter will join individual events into an event
chain. Every event is connected to the next event with a Next edge. Events and resources are con-
nected by SubjectResource edges and thus facilitate the filtering or retrieval of resource-related
events. Resources can also be connected to each other; for example, File and Project nodes
are connected to represent the project structure, facilitate its exploration, detect of hot-spot classes,
and calculate metrics. An example graph representation of an event chain is presented in Figure 5.
The dark gray nodes are events and the light gray nodes denote resources. The individual subgraphs
consisting of light gray nodes are different projects.

In the following paragraph, we will elaborate on each node and their connection in the underlying
graph database. We use the previously introduced categorization of nodes (events and components)
to define the scheme of these.

3.2.1.1 Nodes and Their Properties In the database structure, we use two different labels to dis-
tinguish nodes. There are Event and Resource labels and all of the nodes have a VertexType

2http://tinkerpop.apache.org/

Page 8 Version 1.0
Confidentiality: Public Distribution

22 December 2018

http://tinkerpop.apache.org/

D7.7 Developer Activity Monitoring - Final Version

Figure 5: An example possible graph in our database structure.

property which describes the current event or resource type. We can also group the events based on
whether they are project related or not. For example, a DocumentEvent is connected to a file in
the project, so the event is linked to the project while, a Eclipse Close Event cannot be con-
nected to any of the projects. The events which are related to a project are connected to it through a
Related Project edge.

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 9

D7.7 Developer Activity Monitoring - Final Version

3.2.1.1.1 Abstract Event Node All event types are inherited from this class. Event properties are
listed in Table 1. There is a Timestamp property in this class what the other event classes inherit.
We use Timestamp for Time-based metrics and we delete those nodes that are too old.

Name Java type OrientDB type Range
timestamp Date DateTime representing the time of the event

Table 1: Properties of Event nodes

3.2.1.1.2 Document Event Node Document Event properties are listed in Table 2. As we men-
tioned in the previous paragraph, every event node has a VertexType property which describes the
concrete event type. We use event aggregation for this event type because this is the most frequent
event and we considerably reduce the database size after buffering it. It stores how many key presses
happened before the last event insertion of the same type.

Name Java type OrientDB type Range
Type String String documentChanges
Count String String 1-10
VertexType String String DocumentEvent

Table 2: Properties of Document Event node

3.2.1.1.3 Classpath Change Event Node Classpath Change Event properties are listed in Ta-
ble 3. There are four types of Classpath Change Event, which is stored in Type property. We
distinguish manual and CROSSMINER indicated classpath changes for future metric calculation.

Name Java type OrientDB type Range
Type String String ADDED, DELETED, CROSSMINER _ADDED,

CROSSMINER _DELETED
VertexType String String ClasspathChangeEvent

Table 3: Properties of Classpath Change Event node

3.2.1.1.4 Eclipse Close Event Node Eclipse Close Event properties are listed in Table 4. This
event is used to detect the closing of eclipse, it has no special properties.

Name Java type OrientDB type Range
VertexType String String EclipseCloseEvent

Table 4: Properties of Eclipse close Event node

Page 10 Version 1.0
Confidentiality: Public Distribution

22 December 2018

D7.7 Developer Activity Monitoring - Final Version

Name Java type OrientDB type Range
VertexType String String IdleEvent

Table 5: Properties of Idle Event node

3.2.1.1.5 Idle Event Node Idle Event properties are listed in Table 5. This event, just like Eclipse
Close Event, has no special properties, we use it only to detect when the user is idle.

3.2.1.1.6 Launch Event Node Launch Event properties are listed in Table 6. There are three
types of Launch Event: we distinguish run, debug and test launches for future metric calculation.
The type is stored in the Type property.

Name Java type OrientDB type Range
Type String String run, debug, test
VertexType String String LaunchEvent

Table 6: Properties of Launch Event node

3.2.1.1.7 Part Event Node Part Event properties are listed in Table 7. Part Event nodes contain
information about the part action. For example, if we open a file in Eclipse, text editor part is opened,
brought to the top, activated and its visibility is changed.

Name Java type OrientDB type Range
Type String String ACTIVATED, BROUGHT_TO_TOP, CLOSED,

DEACTIVATED,OPENED, HIDDEN, VISIBLE,
INPUT_CHANGED

VertexType String String PartEvent

Table 7: Properties of Part Event node

3.2.1.1.8 Resource Element Event Node Resource Element Event properties are listed in Ta-
ble 8. The Type property contains information whether the resource is saved or deleted.

Name Java type OrientDB type Range
Type String String SAVED, DELETED
VertexType String String ElementEvent

Table 8: Properties of Resource Element Event node

3.2.1.1.9 Window Event Node Window Event properties are listed in Table 9. It stores informa-
tion about the life-cycle of Eclipse windows in the same way as the Part event handles information
about the parts.

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 11

D7.7 Developer Activity Monitoring - Final Version

Name Java type OrientDB type Range
Type String String ACTIVATED, CLOSED, DEACTIVATED, OPENED
VertexType String String PartEvent
Title String String Workspace

Table 9: Properties of Window Event node

3.2.1.1.10 CROSSMINER Search Usage Event Node CROSSMINER Search Usage Event
properties are listed in Table 10. This event is used for plug-in related metric computation.

Name Java type OrientDB type Range
VertexType String String CrossminerSearchUsageEvent

Table 10: Properties of CROSSMINER Search Usage Event node

3.2.1.1.11 CROSSMINER Search Success Event Node CROSSMINER Search Success Event
properties are listed in Table 11. This event is used for plug-in related metric computation.

Name Java type OrientDB type Range
VertexType String String CrossminerSearchSuccesEvent

Table 11: Properties of CROSSMINER Search Success Event node

3.2.1.1.12 CROSSMINER Library Usage Event Node CROSSMINER Library Usage Event
Node properties are listed in Table 12. This event is used for plug-in related metric computation.

Name Java type OrientDB type Range
VertexType String String CrossminerLibraryUsageEvent

Table 12: Properties of CROSSMINER Library Usage Event Node node

3.2.1.2 Edges and Their Properties All events are connected to the following event with a Next
edge. Those events which are related to Resources have a Subject Resource edge to their
resources. There are also connection among the resources, for example, project hierarchy represented
with Contains edges. A concrete example is shown on Figure 6. As we can see, events are
connected with Next edges, the Document Events node have a Subject Resource edge to
the file which is affected. The Package node Contains three File nodes.

3.2.1.3 Representing the Chain of Events We used the above-detailed nodes and edges to rep-
resent sequential events during the development of the target application. The event chain contains
all user indicated events in chronological order (Figure 7).

Page 12 Version 1.0
Confidentiality: Public Distribution

22 December 2018

D7.7 Developer Activity Monitoring - Final Version

Figure 6: An example of the Document Event node

3.2.1.4 Representing the Project Hierarchy To capture Resource related events, we need to
represent the project, its components, ant their hierarchical connections.

After an Eclipse launch or Project open, the plug-in automatically detects the project structure and
stores it in the local database. These representations are static and the events which have a related
file or project resource are connected to these nodes. To identify a project we use a .CROSSMINER
helper file, that is stored in the project folder. We travel recursively through the project tree, start-
ing from the project by using depth-first search to examine relations between project resources. We
use this traversal method to identify the resources for resource-related events too. If we find a non-
represented package or file during the traversal, the algorithm will simply add it to the project hier-
archy representation. By using this method we are able to explore those files which are added from
outside of Eclipse. This type of hierarchy is shown on Figure 8.

3.2.2 Local Resource Management and Further Optimization

As described above, events, connected resources, their attributes, and relations are stored in a local
database on the plug-in (client) side. Due to the frequency and number of events that are generated
by the CROSSMINER Eclipse IDE Plug-in, the size of this database increases very fast. Note, that
the available storage space is limited and the large size of the database hinders fast metric calculation.
So, it is important to manage the database size by deleting events or other entities.

If the users decide to delete the local database content, they are able to do it manually any time by
choosing the related option in the IDE. Another option is based on constraints the age of events.
Thus, if an event gets older than a preset time limit (determined by the user) or the widest time-
window which is calculated, it is deleted from the database. This solution allows the database size to

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 13

D7.7 Developer Activity Monitoring - Final Version

Figure 7: An example of the Event chain

change dynamically, depending on the frequency of the events. Finally, when the developers disable
unwanted metrics, we suppress the collection of unnecessary events.

Besides the events, the database also stores related resources. As the resources are static items, i. e.
non-temporal events, they cannot be simply deleted from the database even if they are not connected
to other events at the given time. On the other hand, being static, the storage space these items
consume will not grow as dynamically as in the case of events. This allows us to ignore the dynamic
management of these resources.

3.3 Computation of Process Metrics

Events are collected for the purpose to compute process metrics. The values of these metrics are used
to describe the development from different aspects. For example, we can calculate the average save

Page 14 Version 1.0
Confidentiality: Public Distribution

22 December 2018

D7.7 Developer Activity Monitoring - Final Version

Figure 8: Project hierarchy subtree from our database structure.

rate in a dedicated time period or count different development-related interactions. We call these
basic metrics. In the following subsections, we will introduce each of these.

3.3.1 Basic Metrics

3.3.1.1 File-Access-Rate Basic Metric Intended to express the Average count of Java source files
open and brought to the top.

We use the following events and components to calculate this metric.

• Part event
• File resource

3.3.1.2 Working-time Basic Metric Used to express the amount of time while the user works on
different Java files.

We use the following events and components to calculate this metric.

• Document event

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 15

D7.7 Developer Activity Monitoring - Final Version

• Idle event
• File resource

3.3.1.3 Testing-rate Basic Metric Used to express the amount of test execution by the user.

We use the following events and components to calculate this metric.

• Launch event
• File resource

3.3.1.4 GUI-usage-rate Basic Metric Used to express the ratio of graphical interface interaction
by the user.

We use the following events and components to calculate this metric.

• Part event
• Window resource

3.3.1.5 Modification-rate Basic Metric Used to express the ratio of file modifications by the
user.

We use the following events and components to calculate this metric.

• Document event
• File resource

3.3.1.6 CROSSMINER-Search-Success Basic Metric Used to express the amount of successful
CROSSMINER Eclipse IDE Plug-in search by the user.

We use the following events and components to calculate this metric.

• CROSSMINER search success event

3.3.1.7 CROSSMINER-Search-Usage Basic Metric Used to express the amount of using the
CROSSMINER Eclipse IDE Plug-in search function by the user.

We use the following events and components to calculate this metric.

• CROSSMINER search usage event

3.3.1.8 CROSSMINER-Library-Usage Basic Metric Used to express the amount of using the
CROSSMINER Eclipse IDE Plug-in library search function by the user.

We use the following events and components to calculate this metric.

• CROSSMINER library usage event

Page 16 Version 1.0
Confidentiality: Public Distribution

22 December 2018

D7.7 Developer Activity Monitoring - Final Version

3.3.2 Aggregation strategies

To transform the event chain into metric values, we use two similar strategies. Both strategies process
subsequent events and compute metric values based on the number or the property values of certain
events. The two strategies differ in how the start and end events of the sequence are determined.

The first, so-called time-based strategy uses fixed time windows to compute the metrics. In this strat-
egy, we split the day into non-overlapping equal-length time periods (called windows), and compute
the metric values using the events in a single window. Metrics are computed for all windows. The
computation of this kind of metrics are illustrated on Figure 9 by the purple lines above the event
chain.

Careful selection of the time windows is required. Our experiences have shown that time window
must be distinct and fixed within a day. But the non-overlapping feature does not mean that we
cannot have different window settings at the same time. We can define non-overlapping 1-hour long
windows for some metrics while using 2-hours long windows to compute other metrics for the same
event chain (as shown in Figure 9 by the solid and dashed purple lines). For example, we can create a
metric called “Manual and CROSSMINER library change ratio in an hour” and similar metrics with
two and four hours long windows.

Figure 9: Time and milestone based metric computation

We call the second strategy milestone-based strategy. In this case, instead of the time-based windows,
we use specific events to split and limit the event chains on which the metric values are calculated.
In Figure 9, the orange lines illustrate the milestone-based strategy, where the save events have been
chosen as milestones.

3.3.2.1 Aggregation Functions There are several aggregation functions to be used with either of
the previously described strategies. In this section, we elaborate the well known statistical function
we have chosen to implement.

Average The common arithmetic mean.

Summation The sum of all items.

Standard deviation Used to quantify the amount of variation or dispersion of the set of values.

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 17

D7.7 Developer Activity Monitoring - Final Version

As stated earlier the calculation of basic metrics are constrained with various time-windows. In this
section, we list both the milestone and the duration-based time window definitions included in the
CROSSMINER Eclipse IDE Plug-in.

3.3.2.1.1 Duration-based windows Time-based windows are defined with a duration and a count
of inspected windows counted from the present. Duration defines the size of the window and the
count describes how many of these windows will be analyzed (as shown in Table 13). For example, a
short-term time window works with 24 1-hour windows. These duration and count values are based
on our experiences and common practices of the developers.

Name Duration (hours) Count
short-term 1 24
mid-term 24 7
long-term 168 4
overview-term 24 28

Table 13: Time-based windows which is used for metric aggregation.

3.3.2.1.2 Milestone-based windows The milestone-based windows are calculated from an event
and a count. The event describes the event type what we are using for splitting the event chain to
get the windows. The count just like before describes how many of these windows will be inspected.
An example is shown in Table 14. In this, a session window uses Eclipse close events to split the
chain, and using 15 of these windows are used. These event and count values are also from our daily
observation.

Name Event Count
session Eclipse close 15
engagement Save 15
last-session Eclipse close 1
last-engagement Save 1
coding-session Launch 15
last-coding-session Launch 1

Table 14: Milestone-based windows which is used for metric aggregation

3.3.3 Calculated Metrics

As mentioned above, the current implementation uses the OrientDB database which is accessed using
the Gremlin graph database query language3 provided by Apache TinkerPop™. Using Gremlin, we
are able to filter events by their type or other properties, and we can follow the edges to find the

3http://tinkerpop.apache.org/gremlin.html

Page 18 Version 1.0
Confidentiality: Public Distribution

22 December 2018

http://tinkerpop.apache.org/gremlin.html

D7.7 Developer Activity Monitoring - Final Version

connections between the nodes. Gremlin provides us various tools to manage our graphs. The basis
of all of our metrics is a gremlin query which lists or counts the dedicated vertices. We use various
aggregations on this data set to calculate the defined metrics. We have implemented some aggregation
methods, but the list can be easily expanded if needed.

The following example selects and lists all the vertices that are save events
(VertexType.ELEMENT_EVENT and ResourceElementStateType.SAVED) and con-
tained in a time window (between begin and end).

L i s t < Ver tex > l i s t = g r a p h T r a v e r s a l S o u r c e .V()
. has (" Ver texType " , Ver texType . ELEMENT_EVENT)
. has (" Type " , R e s o u r c e E l e m e n t S t a t e T y p e .SAVED)
. where (__ . has (" TimeStamp " , P . g t e (b e g i n)))
. where (__ . has (" TimeStamp " , P . l t e (end)))
. o r d e r () . by (" TimeStamp " , Order . i n c r)
. t o L i s t () ;

Listing 1: Simple Gremlin query, to select events in a time window.

3.3.3.1 Calculated Metrics Any calculated metric consists of a basic-metric and an aggregation
(which include the strategy and the function) component. In the following sections we list all the
calculated metrics that are built from a basic metric, a time window and an aggregation function. The
tables for each metric show which metric windows and which aggregation function is used for the
calculations.

av
er

ag
e

st
de

v
su

m

short-term X
mid-term X
long-term X
overview-term X X
session
engagement
last-session
last-engagement
coding-session X
last-coding-session

Table 15: Different calculation methods for CROSSMINER-library-usage metric

3.3.3.1.1 CROSSMINER-library-usage The purpose of this metric is to analyze the plug-in pro-
vided library-related features. The different methods to calculate this metric are shown in Table 15.

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 19

D7.7 Developer Activity Monitoring - Final Version

av
er

ag
e

st
de

v
su

m

short-term X
mid-term X
long-term X
overview-term X X
session
engagement
last-session
last-engagement
coding-session X
last-coding-session

Table 16: Different calculation methods for CROSSMINER-search-usage metric

3.3.3.1.2 CROSSMINER-search-usage This metric is to analyze the plug-in provided search
function. The different methods to calculate this metric are shown in Table 16.

av
er

ag
e

st
de

v
su

m

short-term X
mid-term X
long-term X
overview-term X X
session
engagement
last-session
last-engagement
coding-session X
last-coding-session

Table 17: Different calculation methods for CROSSMINER-search-success metric

3.3.3.1.3 CROSSMINER-search-success This metric helps to analyze the success of the plug-
in provided library search function. The different methods to calculate this metric are shown in
Table 17.

3.3.3.1.4 Modification-rate Used to express the rate of file modification by the user. The differ-
ent methods to calculate this metric are shown in Table 18.

Page 20 Version 1.0
Confidentiality: Public Distribution

22 December 2018

D7.7 Developer Activity Monitoring - Final Version

av
er

ag
e

st
de

v
su

m

short-term X
mid-term X
long-term X
overview-term X X
session
engagement
last-session
last-engagement
coding-session
last-coding-session

Table 18: Different calculation methods for Modification-rate metric

av
er

ag
e

st
de

v
su

m
short-term X
mid-term X
long-term X
overview-term X X
session
engagement
last-session
last-engagement
coding-session
last-coding-session

Table 19: Different calculation methods for GUI-usage-rate metric

3.3.3.1.5 GUI-usage-rate Used to express the rate of graphical interface interactions by the user.
The different methods to calculate this metric are shown in Table 19.

3.3.3.1.6 Trust This metric expresses the user’s trust towards the IDE. It is calculated by mea-
suring the rate of file modification between saves, i. e. how much changes are kept unsaved. The
different calculation methods to calculate this metric are shown in Table 20.

3.3.3.1.7 Confidence This metric covers a similar concept like trust, but it expresses the self-
confidence of the developers. It captures the amount of file modification without execution of the
system under development. The different methods to calculate this metric are shown in Table 21.

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 21

D7.7 Developer Activity Monitoring - Final Version

av
er

ag
e

st
de

v
su

m

short-term
mid-term
long-term
overview-term
session
engagement X X
last-session
last-engagement X
coding-session
last-coding-session

Table 20: Different calculation methods for Trust metric

av
er

ag
e

st
de

v
su

m
short-term
mid-term
long-term
overview-term
session
engagement
last-session
last-engagement
coding-session X X
last-coding-session X

Table 21: Different calculation methods for Confidence metric.

3.3.3.1.8 Testing-rate It is used to express the amount of test execution by the user. The different
calculation methods of this metric are shown in Table 22.

3.3.3.1.9 Working-time We use it to express the amount of time while the user works on different
Java files. The different ways to calculate this metric are shown in Table 23.

3.3.3.1.10 File-access-rate Intend to express the Average count of Java source file opens and
focuses. The different methods to calculate this metric are shown in Table 24.

Page 22 Version 1.0
Confidentiality: Public Distribution

22 December 2018

D7.7 Developer Activity Monitoring - Final Version

av
er

ag
e

st
de

v
su

m

short-term X
mid-term X
long-term X
overview-term X X
session
engagement
last-session
last-engagement
coding-session X
last-coding-session

Table 22: Different calculation methods for Testing-rate metric

av
er

ag
e

st
de

v
su

m
short-term X
mid-term X
long-term X
overview-term X
session
engagement
last-session
last-engagement
coding-session X
last-coding-session

Table 23: Different calculation methods for Working-time metric

3.3.4 Sending metrics to the CROSSMINER server

The metric values are sent to the server in JSON format. This data contains a user identifier field
(which could be used to authenticate the user without revealing its real identity) and a list of projects.
The projects are identified with their GitHub URL. They contain a list of metrics which are computed
from project-related events. Each metric has an identifier and a value property. The value of a metric
is always represented as a double precision floating point number. For the work-time related metrics,
we also includ a helper property, namely fully qualified name, which will contain the path to the
subject Java source file. This implementation contains all of the information required by the server
in order to process the metric object.

The CROSSMINER Eclipse IDE Plug-in sends metrics to the server in every predefined time period
using a push-based communication method. The user is able to configure the time period at the client

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 23

D7.7 Developer Activity Monitoring - Final Version

av
er

ag
e

st
de

v
su

m

short-term X
mid-term X
long-term X
overview-term X X
session
engagement
last-session
last-engagement
coding-session X
last-coding-session

Table 24: Different calculation methods for File-access-rate metric.

side. Moreover, users have to set their CROSSMINER authentication key in the CROSSMINER
Eclipse IDE Plug-in settings to use this feature; without authentication, the server can’t identify
which client is sending the metrics. Note, that authentication is used only to differentiate between
individual users and not to connect the measured metric values to specific users.

1 {
2 "projects": {
3 "https://github.com/crossminer/crossminer/tree/dev/eclipse-based-

ide": {
4 "modification_rate": {
5 "shortterm_modificaton_rate": 121241,
6 "midterm_modificaton_rate": 12412,
7 "longterm_modificaton_rate": 12312,
8 "overview_modificaton_rate": 12312,
9 "divergency_modificaton_rate": 12312

10 },
11 "gui_usage_rate": {
12 "shortterm_gui_usage_rate": 121241,
13 "midterm_gui_usage_rate": 12412,
14 "longterm_gui_usage_rate": 12312,
15 "overview_gui_usage_rate": 12312,
16 "divergency_gui_usage_rate": 12312
17 },
18 "working-time:CROSSMINER/Usermonitoring/Event/EventManager.java":

{
19 "shortterm_working-time": 121241,
20 "midterm_working-time": 12412,
21 "longterm_working-time": 12312,

Page 24 Version 1.0
Confidentiality: Public Distribution

22 December 2018

D7.7 Developer Activity Monitoring - Final Version

22 "overview_working-time": 12312,
23 "divergency_working-time": 12312,
24 "per_coding_session_working-time": 12312,
25 "fully_qualified_name": "CROSSMINER/Usermonitoring/Event/

EventManager.java"
26 },
27 "working-time:CROSSMINER/Usermonitoring/Gremlin/GremlinAdapter.

java": {
28 "shortterm_working-time": 121241,
29 "midterm_working-time": 12412,
30 "longterm_working-time": 12312,
31 "overview_working-time": 12312,
32 "divergency_working-time": 12312,
33 "per_coding_session_working-time": 12312,
34 "fully_qualified_name": "CROSSMINER/Usermonitoring/Gremlin/

GremlinAdapter.java"
35 },
36 "working-time:CROSSMINER/Usermonitoring/Vertices/VertexProperty.

java": {
37 "shortterm_working-time": 121241,
38 "midterm_working-time": 12412,
39 "longterm_working-time": 12312,
40 "overview_working-time": 12312,
41 "divergency_working-time": 12312,
42 "per_coding_session_working-time": "12312",
43 "fully_qualified_name": "CROSSMINER/Usermonitoring/Vertices/

VertexProperty.java"
44 }
45 },
46 "https://github.com/yomotsu/camera-controls": {
47 "modification_rate": {
48 "shortterm_modificaton_rate": 121241,
49 "midterm_modificaton_rate": 12412,
50 "longterm_modificaton_rate": 12312,
51 "overview_modificaton_rate": 12312,
52 "divergency_modificaton_rate": 12312
53 },
54 "gui_usage_rate": {
55 "shortterm_gui_usage_rate": 121241,
56 "midterm_gui_usage_rate": 12412,
57 "longterm_gui_usage_rate": 12312,
58 "overview_gui_usage_rate": 12312,

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 25

D7.7 Developer Activity Monitoring - Final Version

59 "divergency_gui_usage_rate": 12312
60 },
61 "working-time:Camera/Control/Camera/CameraControl.java": {
62 "shortterm_working-time": 121241,
63 "midterm_working-time": 12412,
64 "longterm_working-time": 12312,
65 "overview_working-time": 12312,
66 "divergency_working-time": 12312,
67 "per_coding_session_working-time": 12312,
68 "fully_qualified_name": "Camera/Control/Camera/CameraControl.java"
69 },
70 "working-time:Camera/Control/Camera/Axis.java": {
71 "shortterm_working-time": 121241,
72 "midterm_working-time": 12412,
73 "longterm_working-time": 12312,
74 "overview_working-time": 12312,
75 "divergency_working-time": 12312,
76 "per_coding_session_working-time": 12312,
77 "fully_qualified_name": "Camera/Control/Camera/Axis.java"
78 },
79 "working-time:Camera/Resources/Shaders/Shader.java": {
80 "shortterm_working-time": 121241,
81 "midterm_working-time": 12412,
82 "longterm_working-time": 12312,
83 "overview_working-time": 12312,
84 "divergency_working-time": 12312,
85 "per_coding_session_working-time": 12312,
86 "fully_qualified_name": "Camera/Resources/Shaders/Shader.java"
87 }
88 }
89 }
90 }

4 Developer Activity Monitoring Control

The user has full control over the Developer Activity monitoring. In this section, we elaborate on the
various Developer Activity Monitoring related settings and customization functions.

Page 26 Version 1.0
Confidentiality: Public Distribution

22 December 2018

D7.7 Developer Activity Monitoring - Final Version

4.1 Documentation

The developer is able to examine the collected metrics and the related event using the integrated
preferences page. This UI also displays a short description for each of these with a small example to
illustrate its usage. The user could find further details about these in the included user manual, which
is also presented in a PDF format for convenience.

4.2 Changing Set of Detected Metrics

Figure 10: Filtering detected metrics

In the preferences page, the user can disable the computation of various metrics, or whole monitoring
process. The user is able to delete the local database if it is desired.

The deactivation of metrics does not change the collection of underlying events since there are usually
more than one metrics use them. To help the user to make the proper customization, we highlighted

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 27

D7.7 Developer Activity Monitoring - Final Version

the related events for the selected metric. These settings are shown on the right side of Figure 10. If
an event type is unnecessary because none of metric uses it, then it will not be stored in the database.

4.3 Enable and Disable Event’s Collection

It is possible to activate or disable the collection for each event individually. After an event type is
disabled those metrics which rely on that event type are not calculated (Figure 11).

Figure 11: Filtering collected events

4.4 Parameterized Events

There is type of events that requires custom parameters which are usually different for each user. For
example, for the Idle event the user is able the specify the duration of an event-less period which
identified as idle time. These properties have default values based on our observations.

Page 28 Version 1.0
Confidentiality: Public Distribution

22 December 2018

D7.7 Developer Activity Monitoring - Final Version

Idle event The duration of event-less period.

Document Change event Count of subsequent keystrokes or the longest delay between them.

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 29

D7.7 Developer Activity Monitoring - Final Version

5 Conclusion

In this deliverable the CROSSMINER Eclipse IDE Plug-in was extended with Developer Activity
Monitoring features. In this section, first we overview the implemented functionality (strictly con-
centrating on the Developer Activity Monitoring related ones).

In the following subsections we show how the technical (Section 5.1) and use case (Section 5.2)
requirements related to the Developer Activity Monitoring features of the CROSSMINER Eclipse
IDE Plug-in and defined in the Project Requirements document (deliverable D1.1) are covered by the
interim version of the plug-in that uses the final Developer Activity Monitoring features. In the last
column of the tables an empty circle (#) denotes that the requirement is minimally (or not) covered,
a half-filled circle (G#) denotes that it is only partially covered, and a filled circle () denotes that it
is mostly (or fully) covered from this deliverable’s point of view.

5.1 Technical requirements

D74 The IDE shall provide a settings interface to the user, where the dif-
ferent properties of the CROSSMINER IDE plugin (like server ad-
dress and port, global settings for recommendation queries, etc.) can
be checked and changed. So the user can configure the plugin.

SHALL

D95 The IDE shall provide full control over the collected and transferred
user activity monitoring data. So the user can allow or deny the col-
lection and/or anonymised transfer of the activity data collected from
their session.

SHALL

D96 The IDE shall recognize, compute, and extract the following user ac-
tivities, metrics, or information: frequent search expression.

SHALL

D97 The IDE should recognize, compute, and extract the following user
activities, metrics, or information: project or file open, manipulation,
close, program execution, test execution, user search patterns, working
time on a file.

SHOULD

D98 The IDE shall be able to send developer activity data (as controlled by
the user settings) to the CROSSMINER server.

SHALL

5.2 Use case requirements

U176 There is a strict and public strategy regarding privacy and data SHALL
U177 Users cannot be identified from monitoring data SHALL
U178 Monitoring is able to identify testing activities SHOULD
U179 Monitoring is able to identify development activities SHOULD
U180 Monitoring is able to identify errors in IDE SHOULD #

Page 30 Version 1.0
Confidentiality: Public Distribution

22 December 2018

D7.7 Developer Activity Monitoring - Final Version

U181 Monitoring records the time the developer works on a given file/code
element/line

SHOULD

U182 Monitoring of developer activity can be disabled by the developer SHALL
U183 Types of data collected from monitoring are transparent to the devel-

oper
SHALL

U220 User and admin documentation is embedded into the UI SHALL
U225 Plugin supports the latest supported release of Eclipse SHALL

22 December 2018 Version 1.0
Confidentiality: Public Distribution

Page 31

	Introduction
	Technical documentation
	Scenarios
	Detection of Process Metrics
	Usage of Process Metrics

	Implementation
	Eclipse IDE Event Detection
	Types and Properties of Recorded Events
	Categorization of Event Related Components

	Eclipse IDE Event Preprocessing
	Representation and Event Storing Logic
	Local Resource Management and Further Optimization

	Computation of Process Metrics
	Basic Metrics
	Aggregation strategies
	Calculated Metrics
	Sending metrics to the CROSSMINER server

	Developer Activity Monitoring Control
	Documentation
	Changing Set of Detected Metrics
	Enable and Disable Event's Collection
	Parameterized Events

	Conclusion
	Technical requirements
	Use case requirements

