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Executive Summary

In this deliverable, we present the work conducted to complete Task 3.4. Specifically, we present two readers
developed for retrieving documentation files and three different tools for processing documentation and deter-
mine aspects such as documentation types, readability and license. We describe the tool created along with our
partners from Centrum Wiskunde & Informatica (CWI) for detecting discussions revolving around API migra-
tion issues. The description of a recommendation system for code snippets and discussions is introduced along
with new readers that have been created for CROSSMINER regarding communication channel sources. We
also explain, new metrics that have been created in the last 6 months to process the data retrieved by CROSS-
MINER. An analysis of risks and limitation is presented at the end of the deliverable, followed by a conclusion
summarising our progress presented in this deliverable.
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1 Introduction

In this deliverable, we address the work required to fulfill Task 3.4 which is the last of 4 tasks required to com-
plete work package 3 (WP3) of the CROSSMINER project. Task 3.4 is aimed at developing tools/components
that would facilitate (1) the analyses of open source software (OSS) project documentation to determine com-
pleteness and readability; and (2) the analyses of online resources in order to recommend code snippets and
discussions relevant to the code being developed in the IDE. Thus, in this deliverable we introduced new tools
that we have developed for CROSSMINER for these purposes. More specifically, we present the documenta-
tion readers and the tools for assessing documentation, a documentation classifier, a documentation readability
tool and a license analyser for documentation files. We also explain in this deliverable, the progress that has
been made for searching and indicating which discussions, i.e. software bugs, emails, forums posts, revolve to
API migration issues. It is important to note that all the tools/components developed to address Task 3.4 are
new tools that do not exist in OSSMETER.

The work completed in this deliverable builds on, and in some cases, extends the work completed in previous
deliverables in order to fulfill any outstanding work from WP3. In deliverable 3.1, we investigated state-of-
the-art methods for text representation in order to address the requirements of Task 3.1. In deliverable 3.2,
we presented research work conducted to develop clear understanding of Task 3.2 which focuses on develop-
ing methods for reading and searching text sources associated to OSS projects. Task 3.3 which focuses on the
development and evaluation of natural language components was addressed in two deliverables i.e., D3.3 and
D3.4. Both deliverables presented the tools and components we developed to provide a collection of text min-
ing components that will allow developers to analyse a wide range of textual content related to OSS projects,
in order to produce useful results that could improve their performance and quality of code produced. In par-
ticular, both deliverables provided components we developed for reading and searching text sources associated
to OSS projects such as bug trackers, newsgroups, mailing lists, forums, stack overflow etc. We extended the
existing sources in the current deliverable to include 3 additional sources discussed in Section 5. To anal-
yse information retrieved from these sources, we also developed a number of processing components capable
of computing meaningful evidence for developers such as topics being discussed, the sentiment associated
with user comments etc. These processing components were extended in the current deliverable to include 14
additional components discussed in Section 6 which are specifically aimed at addressing Task 3.4.

1.1 Overview

The remaining of this deliverable is organised into six sections. Section 2 provides details about the tools and
metrics developed to mine project documentation in order to determine completeness and readability. Section
3, presents the tool created for detecting discussions that revolve around API migration issues. Section 4
provides details about the tools and metrics developed to make relevant recommendations to the code being
developed in the IDE. Section 5 and Section 6 present the upgrades and additional components that have been
developed in order to complement the number of sources that CROSSMINER is capable to analyse, as well
as, the new metrics that our platform can process. Section 7 identifies the risks and limitations of the work
presented in this deliverable. Finally, Section 8 presents the conclusion of this deliverable as well as reports on
the current progress of WP3; including future & outstanding work.
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1.2 Intentions

The aim of Task 3.4 is to develop and integrate into CROSSMINER, tools capable of analysing a wide range
of sources and recommend code snippets/online discussions relevant to code being developed. Fulfilment of
the aim requires addressing the use case requirements presented in Table 1. Each requirement has an ID, a
description and priority1.

1.3 Outcome

The outcomes of this deliverable are the components related to documentation analyses and code/discussion
recommender that have been developed and integrated into CROSSMINER. The developed components are
designed to be compatible with the CROSSMINER platform, the knowledge base and can also be used to run
bespoke workflows for knowledge extraction.

1Shall - must be fulfilled, Should - should be fulfilled, May - may be fulfilled
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Ref Description Priority

D38 Shall collaborate with the source code mining work package to analyse documents that con-
tain both natural language and code, e.g. documentation and bug reports. Shall

D39 The knowledge base (Mining Cross-Project Relationships work package) shall provide the
infrastructure for hosting the indexes populated by natural language analysis. Shall

U35 Able to search documentation Shall
U42 Able to detect in the data sources text referring to one or several bugs Shall
U43 Able to detect in the data sources text referring to one or several commits Shall
U45 Able to extract sentiment analysis from wikis Should
U49 Able to detect in the data sources one or several commits hashes Shall
U50 Able to list commits with bugs Shall
U51 Able to list bugs with commits Shall

U59 Able to identify code snippets that use old and new third-party API in forum threads concern-
ing migration of the usage of the given third-party API Shall

U62 Able to extract text from HTML and markdown to feed natural language analysis and identify
code snippets Shall

U63 Able to extract text from PDF to feed natural language analysis and identify code snippets May
U64 Provides recommendations to add documentation commonly found in successful projects Should
U65 Provides recommendations to improve the structure of the documentation Should
U66 Able to analyse Java code snippets Shall
U67 Able to analyse JavaScript code snippets Should
U68 Able to analyse C code snippets Shall
U69 Able to analyse PHP code snippets Shall
U110 Able to analyse PDF documents May
U111 Able to identify the documentation contains a Getting Started Should
U112 Able to identify the documentation contains a User Guide Should
U113 Able to identify the documentation contains a Developer Guide Should
U114 Able to identify the documentation contains a Code Snippets Should
U115 Able to analyse the documentation has a License Shall
U116 Able to analyse readability of documentation Shall
U185 Communication channel parsers use MBoxes Shall
U188 Documentation parsers use data dumps Shall

Table 1: WP3 Use Case Requirements related to Task 3.4
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2 Software Documentation Mining and Processing

Software documentation is a collection of documents that can have different formats, from static text to dy-
namic graphics, that describe in detail a software product in order to be used by developers or end-users [43].

The success and usefulness of an OSS will reside not only on the quality of the software product or aspects
related to users happiness and reactivity of developers to fix issues, it also resides on whether the OSS provides
documentation and its quality. For example, in a survey done in 2017 by GitHub, it was found that 93% of
developers complained about incomplete or confusing documentation [17].

According to [37, 34], a software product that is expected to be shared with the community must be docu-
mented in detail and following a standard formatting. In other words, documentation should contain enough
information for developers and users to understand which is the purpose of the tool, how to use it and how
to maintain it. As well, it should be written in clear way without leaving any kind of ambiguity. Moreover,
the readability and understandability of software documentation is essential not only to use, but to maintain
software [1].

In the following sections, we introduce the series of tools that we have created for CROSSMINER in order to
retrieve documentation from different kind of repositories. As well, we present tools that we have created for
processing and analysing documentation files.

2.1 Documentation Readers

The development of documentation readers started by asking our user case partners to present us with some
examples of documentation sources, especially those that they would be interested in analysing. We recurred
to this approach, instead of defining ourselves the documentation sources to exploit, because we want to fulfil
as much as possible the necessities that our partners have. Moreover, we, as researches could have had a bias
to specific sources that might or not assist our user case partners.

The response obtained from the user case partners consisted of a list of documentation sources that greatly
variate on their format and type of access. For example, we had websites completely dedicated to a project
documentation, websites that contained the information regarding a project and its documentation, documenta-
tion in the shape of wikis accessible through REST APIs, wikis stored as git repositories, documentation stored
in servers, among others. Due to the great variety of documentation sources, and after an extensive analysis,
we decided to categorise the documentation sources into two different groups. The first one are those sources
that are stored using a git repository; the second one includes the documentation sources that can be retrieved
using a web crawler. The decision of splitting documentation sources into these groups is to encompass a large
portion of the documentation sources without increasing to a great extent the number of readers to develop.

In the following sections, we explain in detail the git-based documentation reader and the web-crawler-based
one, that in CROSSMINER scope, is called systematic documentation.

2.1.1 Git-Based Reader

This reader covers documentation that is stored as or in a git repository. Examples of this documentation are
Github Wikis, Gitlab Wikis2 and Bitbucket Wikis. This reader has been implemented by creating an extension

2It should be indicated that Gitlab offers as well the possibility of linking the wikis to external websites, these are not
covered by this reader as they are not git projects.
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of the current git reader found in CROSSMINER. It provides a certain number of unique functionalities, such
as the verification of the repository3 or the complete processing of the documentation repository on the first
day of analysis, regardless if a commit has been done or not4.

The main characteristic of this documentation reader is that it is capable of analysing the evolution of files
as everything is recorded through commits. Furthermore, if CROSSMINER users desire it, they can utilise
along this reader not only the metrics created for documentation but also for the analysis of commits. The only
limitation of this reader is that it cannot retrieve files that have in their name characters considered as illegal
by operating systems ( \ / : * ? " < > | ). Files with illegal characters can happen in certain wikis
online interfaces, such as those provided by GitHub, were the titles of wikis entries, which become files names,
are not restricted in the use of any character.

In Table 2, we present the parameters needed to create a Git-Based Documentation reader in CROSSMINER.

Table 2: Parameters for Git-Based Documentation Reader
Parameter Requirements Description
URL Mandatory The location where the git repository is stored

2.1.2 Systematic documentation

The systematic documentation reader is a tool created to retrieve the files associated to software documentation
that are stored in repositories different than git. For example, this reader is capable of retrieving information
stored as a website in a specific URL or accessing to a server that only shows PDF files.

The reader is based on a web crawler, a tool that for a given URL explores the different hyper-links to find
and download the totality or a portion of the website. Specifically, we make use of Crawler4j, an open-source
library that implements a web crawler based on Java and provides different functionalities, such as a high
customisation or access to websites protected by password5.

Although this reader is versatile, in the sense that it can explore a great variety of websites, it cannot retrieve
elements that existed previous the date of analysis or that are not accessible through a crawler. In other words,
these websites do not provide access to historic versions of the website analysed and in consequence, we can
only retrieve the most recent version of the files. As well, Crawler4j has been configured to follow the rules
defined by websites administrators regarding the use of robots.

The decision to call these readers systematic instead of web-crawling ones, is the fact that these readers should
not be executed on daily basis, but on defined periods greater than one day, as we risk the readers being banned
or blocked by the servers hosting the documentation. More specifically, web crawlers can put a lot of stress to
hosting servers, therefore, it is custom to wait several days before retrieving a portion of the website.

This documentation reader has two different modes. The first one is for websites in which documentation can
be accessed without restrictions; in Table 3, we present the parameters necessary to create this reader. The
second mode is for websites where it is necessary to log-in before accessing the documentation files; for this
mode, the reader has to be set with a greater number of parameters, which are described in Table 4.

3In multiple cases, these wikis can be created or deleted by developers without notice.
4Heuristics have been defined to determine the version of the repository that should be analysed.
5The user needs to define the URL of the login page, the username, password, but also the fields of the names where

the username and password should be pasted.
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Table 3: Parameters for Systematic Documentation Reader with free access to the files that must be
crawled.

Parameter Requirements Description
URL Mandatory Location that has to be crawled

Execution Frequency Optional It indicates how frequent, in days, should be executed the reader. The default
value is 0, which means that the reader is executed just once

Table 4: Parameters for Systematic Documentation Reader where the files to crawl are protected
behind a password.

Parameter Requirements Description
URL Mandatory Location that has to be crawled
Login URL Mandatory Location of the website were the login access has to be done
Username Mandatory Value that has to be used as username to log-in

Username field name Mandatory It indicates to the crawler which is the name of the text field where it has to
be used the username

Password Mandatory Value that has to be used as password to log-in

Password field name Mandatory It indicates to the crawler which is the name of the text field where it has to
be used the password

Execution Frequency Optional It indicates how frequent, in days, should be executed the reader. The default
value is 0, which means that the reader is executed just once

2.2 Classification of Documentation

Software documentation is a collection of documents that have for objective to present in detail the software
product [43]. Moreover, it is composed of different sections such as Installation guide or Getting started [34],
that allows users and developers understanding clearly the functioning of a tool, library or product in general.

Although software documentation is a key element for any product that is expected to be shared internally or
externally, in occasions its quality does not fulfil the minimum standards or, in the worst cases, is non-existing
[34, 37]. These elements certainly put on risk the success of any software project or can affect negatively the
happiness and productivity of users and developers [39]. Therefore, in CROSSMINER we have focused on
different tools for the analysis of documentation, one of them residing on the detection of sections present in
documentation files.

In the following sections, we present the work done in order to solve the problem related to the detection of
software documentation segments. More specifically, we explain the classifier based on heuristics that is used
to detect different documentation types within one or multiple files.

In Section 2.2.1, we present the state-of-the-art. The methodology is detailed in Section 2.2.2, while the
evaluation is shown in Section 2.2.3. The discussion regarding the classifier developed in this deliverable is
presented in Section 2.2.4. We conclude regarding this tool in Section 2.2.5.

2.2.1 State-of-the-art

In the state-of-the-art it is difficult to find works related to the classification of software documentation, in
fact most research works are related, for example, to the evaluation of software documentation quality, util-
ity and costs [43, 14]; issues that are caused by bad practices during the creation and maintenance of software
documentation [2] or the automatic improvement of documentation elements [38, 21]. In the following para-
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graphs, we present the works, that to the best of our knowledge, have discussed the classification of software
documentation.

According to a technical report from the National Aeronautics and Space Administration (NASA) [37], soft-
ware documentation can be classified according to their level of detail and their format quality. Specifically,
there are 4 levels of detail:

• Level A: It represents the best documentation that can be produced. It allows understanding, maintaining
and extending a software component by any person with the minimal required technical qualifications
without needing any external assistance. Aspects such as descriptions, functionalities and operation are
described carefully that they do not leave space for any kind of ambiguity. This level of documentation
is useful for software that is highly used or that is expected to be shared with other people.

• Level B: The elements described in this level of documentation are the same as those found in documents
of Level A. Nonetheless, details are less specific and clear, making it difficult to people without the
average technical qualifications to understand the software. In some cases, descriptions can be vague,
leaving the comprehension of algorithms or methods to the developer discretion but never putting on
risk the performance or quality of the software. This level of documentation can easily be upgraded
to Level A with minor reworking. This level of documentation should be used in software that has a
medium level of use, but it is not expected to be shared with third parties.

• Level C: In this level, documentation can only be understood by highly skilled people and their under-
standing can be used uniquely to maintain or develop code at an acceptable degree. New developers
might need to be in contact frequently with the original programmers. With every change in the code
there is a minimum risk of affecting the software quality and performance; moreover, it increases the
time of debugging and exploring the code. This kind of documentation should not be used in projects
that will be used by external people, that is expected to have a long life cycle or extended use.

• Level D: This level corresponds to documentation with the minimum acceptable degree of detail. It is
frequently only suitable to the original developer(s). A lot of rework has to be done, in order to be useful
by new programmers.

Independently of the level of detail, documentation can belong to one of four different categories of format
quality:

• Category 1: This documentation has the highest levels of format quality as it belongs to software that is
expected to be of general interest or widely used, either by internal or externals users. It is frequently
edited and proofread by professionals and contains high quality images. This kind of documentation is
normally used for software that is considered as stable.

• Category 2: It represents documentation that has a high format quality, however, some elements, such
as editing or typography, do not follow the best standards. This documentation is expected to be read
mostly by users within the organisation that developed the software. Although it might not be edited
by professionals, documentation within this category has passed proofreading and a standard level of
formatting has been used.

• Category 3: Documentation with this format quality belongs to software that is expected to be used only
in-house, that has a short life cycle or that it is still considered unstable. It is expected to fulfil a standard
formatting.

• Category 4: In this category we can find the documentation that has the minimal acceptable level of
formatting. It is frequently used by programs that might not be used again, but due to organisation
policies, it is necessary to have a record of the software implementation.
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In [34], the author presents a different documentation classification, which focuses on first place on the different
cycles of software development and on second place on the target reader. In the following listing, we describe
in detail the proposed documentation classification:

• Process documentation: It registers the procedure followed by developers to create and maintain the
software. It describes elements such as schemes, quality process, verification methods, team organisa-
tion and also it can record memos, reports or minutes.

• Product documentation: As its name indicates, this documentation focuses on the software that is being
developed. It can be system-oriented and/or user-oriented.

N System-oriented: This documentation explains in detail how the software was implemented and
tested, as well as its architecture. The descriptions of the software must be detailed enough to understand
the software and being able to give it maintenance.

N User-oriented: It contains a description of how users can utilise the developed software. A user-
oriented documentation should contain the following types of documents:

H Functional description: It is an overview of the software which allow users deciding whether
the product is adequate to their necessities. It can describe as well the system requirements.

H System installation: It describes in detail, how the software has to be installed and configured.
Introductory manual: This type of documentation presents how to get started with the product

in a general aspect. It contains in most cases with examples or illustrations that can make any user to
understand fast and clear how to use the software.

H System reference manual: It is a documentation type that describes formally and in detail the
software.

H System administrator’s guide: This type of documentation is optional and depends on the
type of software. In summary, it provides information about how the software product can or should
interact with other elements, software or hardware, which are possible error or status messages from
this interaction, and how to maintain this interaction.

2.2.2 Methodology

Despite the existence of different software documentation classification described in Section 2.2.1, to the best
of our knowledge, the automatic classification of software documentation has not been explored. Moreover,
we did not find any corpus related to software documentation that could be used as base.

Thus, in order to solve this classification task, we decided to manually collect documentation of different OSS.
Specifically, we selected 40 projects supported by Eclipse Foundation and analysed their documentation. This
analysis consisted on determining which are the most frequent file formats used for documentation and which
are the elements described in the documentation.

From the manual inspection, we determined that most projects use the following file formats: Microsoft Word,
Portable Document Format (PDF) and HTML. From our knowledge and experience, we extended the possible
file formats as well to: OpenDocument Formats, Manifest, WordPerfect, AbiWord, DJVU, Rich Format Text
and Microsoft Powerpoint.

In addition, based on the manual analysis of the documentation files retrieved by us, our Work Package re-
quirements (U111, U112 and U113) and the classification of product documentation provided by [34], we
have defined the following types of documentation that are detected in CROSSMINER:
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• Getting started guide: This type of documentation presents a global introduction to the OSS as it
summarises aspects such as installation, utilisation and development.

• Installation guide: As the name indicates, it is a documentation type in which it is explained which are
the requirements of the software, its installation and configuration.

• User guide: In this documentation type, the software is presented in detail to the user. In occasions,
the user guide contains as well examples or tutorials that make easier the understanding and use of the
software.

• API guide: This type of documentation is frequently found in software that can be accessed through an
API. It explains all the elements necessary to use the software API.

• Development guide: In this kind of documentation, it is explained either how to use the software to
create tools, or to expand its capacities. In some cases, this documentation explains how to contribute
directly to the project.

We observed as well, that documentation can be split in multiple files, and those might contain one or more
types. Thus, this classification task is multi-label. For example, a file containing a Getting started guide might
as well contain an installation guide. Or a User guide might incorporate a Getting started and an Installation
guide.

Due to the lack of a corpus annotated regarding the types of documentation, and the expensive aspects of
creating one, we decided to deal with the documentation classification using an approach based on heuristics.

This first step followed to achieve our goal consisted in finding tools for extracting text from the files. Although
this task seems easy and straightforward, it is not the case, as not all the files format store in the same way the
information. We decided to use Apache Tika6 an open-source library that collects multiple tools that can be
used to extract metadata and text from different types of file. It contains methods for the automatic detection
of file formats and use automatically the most adequate text extractor. Apache Tika is capable to present the
extracted text in two formats, plain text and HTML. The latter format, depending on the processed file, can be
used to get information regarding the file formatting, such as portions in bold text, headings, listings, among
others. Moreover, its licence, Apache License 2.0, is compatible with the licence of CROSSMINER.

Secondly, we explored the two possible Apache Tika output format, HTML or plain text, to determine which
was the most beneficial for the detection of documentation types using heuristics. After experimenting with
the corpus described previously, we considered that the HTML format presented an advantage over the use of
plain text as format. This benefit resides in the fact that files headings, such as titles and subtitles, can be easily
identified and extracted. Moreover, we observed that headings follow similar patterns and could be a good
indicator of which types of documentation was present.

For the detection of patterns in headings, we considered two possible options. The first one based on edit
distance and the second one based on regular expressions. In the first option, we considered specifically:

• Levenshtein Distance: It is defined as the number of insertions, deletions or substitutions that have to be
done to match two strings. If no insertions, substitutions or deletions have to be done, it means that two
strings are exactly the same.

• FuzzyWuzzy algorithm7: This algorithm is based on Levenshtein Distance, however it implements a
series of heuristics to improve the matching of two strings. For example, FuzzyWuzzy is able to calculate
how well two strings match even if their tokens are in different order.

With respect to the second option, a regular expression is a string, written following the rules of a regular
language, that allows creating, searching or matching patterns [13]. They are founded on formal language

6https://tika.apache.org/
7chairnerd.seatgeek.com/fuzzywuzzy-fuzzy-string-matching-in-python
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theory and are used extensively in searching tools, text validators and programming languages parsers. An
example of a regular expression is [0-9]?[0-9]:[0-9][0-9] ?(am|pm), which can match strings such as 9:30am
or 01:40 pm.8

After the analysis of our possible methods for detecting patterns in headings, we decided to choose regular
expressions. The main reason is that with regular expressions we can have a better control of the patterns to
match and in a structured and understandable format. We considered as well that with edit distance methods,
we need to define not only patterns, as pure text strings, but also thresholds that indicate whether the match
should be considered as correct.

The regular expressions were conceived by manually analysing the headings used by each documentation type,
but also by extending patterns found in other types of headings. For example, we found in one documentation
type the use of the pattern how-to, while in another documentation type we observed the pattern how to;
at the end, and for both documentation types, we created a pattern that could support both: how( |-)to. In
total, we have created 21 regular expressions; specifically, we have generated 4 for getting started, 6 for
installation guide, 2 for user guide, 3 for API guide and 6 for development guide. Although the number of
regular expressions might seem low, it should be understood that one regular expression can encompass more
than one pattern.

2.2.3 Evaluation

Despite the lack of any annotated corpus, we decided to generate a small evaluation set that we annotated in
house. Being more specific, we downloaded the documentation of 64 different OSS projects9 from sources
such as GitHub10, GitLab11, CTAN12, GNU13 and Apache Software Foundation14. From the documentation
from these 64 OSS projects, and as the analysis of documentation is done by files, we selected randomly a total
of 90 files15. These files were manually annotated by 4 researchers using the following criteria:

In the present directory, you will find files randomly selected, and in their original format, from
documentation of different OSS projects. Each file can contain the totality of the documentation
or just a portion of it. Your task is to determine whether each file contain one or more of the
following sections: . . . During the file annotation, it is necessary to indicate whether the file
contains clearly the section (set a value of 1), i.e. marked by a heading or title, or the text in
the file belongs to a larger section (set a value of 2). Listings, bullet points, menus or headings
making reference to an empty section should not be considered. If a section is not present, set a
value of zero.

Each of the researchers annotated 45 files, 30 of these files were common for every researcher. The common
annotation was done to calculate the inter-annotator agreement rate using Fleiss’ Kappa [10].

8A more complex regular expression can be generated to prevent the matching of strings such as 99:99am.
9These projects are completely different from the 40 projects described previously in Section 2.2.2.

10github.com
11gitlab.com
12ctan.org
13gnu.org
14apache.org
15Software documentation can be presented in different ways, it can be contained in a unique file while sometimes it

can be spread in multiple files.
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Table 5: Results in terms of Fleiss’ Kappa of the inter-annotator agreement for the 30 common
documentation files.

Data Fleiss’ Kappa
Original 0.174
Strict 0.252
Relaxed 0.246

Table 6: Thumbs’ rule for Fleiss’ Kappa according to [25]
κ Interpretation
< 0 poor agreement

0.01− 0.20 slight agreement
0.21− 0.40 fair agreement
0.41− 0.60 moderate agreement
0.61− 0.80 substantial agreement
0.81− 1.00 almost perfect agreement

As the problem is multi-label, i.e. a documentation file might contain more than one section, to calculate Fleiss
Kappa, we created vectors using a hierarchy of decimal numbers. In other words, we set to Getting started the
value of 10, 000, Installation guide the value of 1, 000, User guide a value of 100 and so on. For example, if
an annotator marked a file to contain API and User Guide the vector would be 110, while a file containing a
portion of the installation guide, it would have a vector of 2000. As there were two possible values for each
section, i.e. 1 if the section was clearly delimited or 2 if text belonged to a larger section, we calculated in three
different ways Fleiss’ Kappa. One in which we kept the original values, one where we changed the values of
2 to 1 (strict) and one where we changed the values from 2 to 0 (relaxed). In Table 5, we present the results
regarding the inter-annotator agreement for the 30 commons files; in Table 6, we present the thumbs’ rule for
Fleiss’ Kappa [25].

We can observe in Table 5, that the agreement between annotators is between slight and fair. Due to the low
values of agreement between annotators, we have decided to determine the agreement rate of the annotators by
types of documentation. The results are presented in Table 7.

From Table 7, we can determine that the most difficult sections to annotate corresponded to Getting started
and specially to Development guide, while the easiest is Installation guide. In Section 2.2.4, we will discuss in
depth these results.

Because the agreement between annotators was low, we decided to select the final labels for the 30 commonly
annotated files using two approaches: one where at least 3 annotators have chosen the label (majority) and

Table 7: Values of Fleiss’ Kappa for each section type found in the 30 common files of documentation
manually annotated.

Data Fleiss’ Kappa
Getting started Installation guide User guide API guide Development guide

Original 0.124 0.684 0.594 0.459 0.0993
Strict 0.101 0.736 0.594 0.670 0.144
Relaxed 0.216 0.745 0.367 0.369 0.0872
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Table 8: Results in terms of Precision (P), Recall (R) and F-score (F1) for each of the types of
documentation.

Data Getting started Installation guide User guide API guide Development guide
P R F1 P R F1 P R F1 P R F1 P R F1

Strict-Majority 0.18 0.38 0.25 0.29 0.17 0.22 0.50 0.06 0.11 0.10 0.18 0.12 0.29 0.42 0.18
Strict-Half 0.33 0.36 0.34 0.23 0.13 0.17 0.50 0.05 0.09 0.15 0.25 0.18 0.12 0.30 0.17
Relaxed-Majority 0.14 0.36 0.21 0.29 0.21 0.25 0.50 0.10 0.17 0.10 0.25 0.14 0.12 0.50 0.19
Relaxed-Half 0.25 0.35 0.29 0.29 0.20 0.23 0.50 0.08 0.14 0.10 0.22 0.13 0.12 0.33 0.17

one where at least two annotators have selected the label (half ). In Table 8, we present the results in terms of
precision and recall for each type of documentation.

In Table 8, we can observe that, in terms of F-score, the best predicted type of documentation is Getting started
while the worst predicted one is User guide. However, all the results are far from the desired performances. In
the next section, we will discuss these results.

2.2.4 Discussion

As we observed in Table 5, the low values of inter-annotator agreement rates indicates that the manual anno-
tation of documentation files is not an easy task. After a manual analysis of some annotated files where there
was a disagreement, and a discussion with the annotators to know their point of view. In the following listing,
we present the most representative:

• Some annotators considered that the description of software features is a or part of Getting Started
guide.

• Difficulty to determine if the text in a file described a full section or not. For instance, a file describing
a portion of a user guide, was considered by two annotators as the full user guide, by one annotator as
getting started and another did not annotate it as a user guide at all.

• The visual aspect of a file affected the annotation. For example, a file describing one API method was
considered by 3 annotators as a full API section, the other as a portion of an API documentation.

Taking into account the previous discussion, we can observe, that the lack of context, i.e. full access to all the
documentation files, has affected the perception of the annotators. However, it is not clear for us how to solve
this issue: should we make the annotators to label all the files of a software documentation or just give them
access to them in order to understand the context. This is specially in large projects, were the number of files
composing the documentation ca be very large; thus, annotating all the files can be very tedious, while finding
the correct context of a file can be difficult.

Another point that affected the annotation was the visual aspect of the documentation. We provided to the
annotators files that in occasions have lost their format during the retrieval, for example, HTML files were
not accompanied by a CSS file. This has made that aspects such as coloured boxes, menus or footnotes, were
completely lost, making the annotators unable to determine, for example, borders between sections or whether
the file contained a heading or not. To prevent this issue, we might need to give annotators the links to the
documentation file instead a downloaded version of it.

The results obtained by the classifier are far from the expected performance, however, taking into account the
difficulty of manual annotators to agree, we consider that the results are adequate. In occasions, the lack of
matching between the prediction and the annotations is because a case not covered by the regular expressions.
For example, in a file the section that describes how to install and run the software is called simply Running.
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In some other cases, it is because the words can have multiple interpretation. For instance, in a file, there
is a heading indicating how to contribute?, nonetheless, the text in this section expresses how to contribute
monetarily to the support the developers, instead of how to participate in the development of the software.

There is a lot of work to do in order to improve the output of the classifier. More rules could be created and
possibly word sense disambiguation tools could be used. However, we consider that in order to truly improve
the outcome of the classifier, it is mandatory to create an annotated corpus. From this collection of files, we
could extract patterns or, if it is large enough, we could use machine learning approaches. In all the cases, the
creation of this corpus should consider documentation context and visual aspect, in order to increase, in theory,
the agreement between annotators.

Although it can be discussed that the approach used for documentation classification is not useful for docu-
mentation without headings, based on the literature review done in Section 2.2.1, we can conclude that for any
project that is expected to be shared, the software documentation should have a minimal formatting. In other
words, according to works, such as [34, 37], good documentation must use elements such as headings, in or-
der to make visible and clear the elements that users or developers need to understand and utilise the software
product.

During an informal testing, some documents described at the beginning of this section, despite being correctly
opened by tools, such as Adobe Reader, they used (internally) non-standard ways to store the text, making
impossible to extract the data using Apache Tika16. This means that it is impossible to extract the text from
a file and in consequence determine the types of documentation present. This is a limitation of our approach,
in the sense that we rely on the correct extraction of text using a third-party tool. Although we could rely as
well on the extraction of text using Optical Character Recognition (OCR) tools in case Apache Tika fails, the
problem of the classification is not solved. In first place OCR tools are not 100% accurate but most importantly,
they are incapable of indicating us whether a portion of text is a heading or not.

Another limitation of our approach is the fact that, it cannot be applied to files that after extracting their text
do not generate headings, such as plain text files. We could still apply the regular expressions to the text
without headings from these files. However, we increase the risk of matching portions of text incorrectly ,
since headings are useful for providing context in certain documentation types.

2.2.5 Conclusion

In order to increase the success rate of any software product that is expected to be shared with other potential
users, it is necessary to provide a collection of documents that describe in detail the functioning and structure
of the software product. This collection of documents are called software documentation and are composed of
a variety of sections such as Installation guide, Getting started or API guide.

However, despite the creation of software documentation is considered to be part of the best practices that
should be followed by developers, in occasions software documentation do not have the minimal standards
of structure or formatting. The identification of the sections described in software documentation can provide
information to developers indications of possible missing elements, while to the users indication of how easy
could be the use and understanding of the software.

Therefore, in CROSSMINER, we have decided to incorporate a completely new tool which consist on the
determining whether software documentation contains elements such as User guide, Getting started and De-
velopment guide. This documentation classifier has been created using heuristics. More specifically on the

16In issues.apache.org/jira/browse/PDFBOX-3742 we find an example of this kind of errors. The developers of PDF-
Box, the tool used by Apache Tika for extracting text from PDF, explain that these problems can only be solved using
heuristics.
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matching of regular expression in headings found in documentation files. To achieve this, we analysed a col-
lection of software documentation files created by us in order to create a series of regular expression that can
detect 5 different types of documentation: Getting started guide, Installation guide, User guide, API guide and
Development guide.

The developed tool was evaluated using a small corpus manually annotated. From the outcomes obtained, we
can tell that the task of classifying automatically documentation types is not easy to do, either for humans or
machines. For humans, aspects such as visual formatting or lack of context, affected severely the annotation
process. While for machines, the use of regular expressions to match patterns, were not enough to deal with
the great variety of words used to present the sections, even less, to cope with words with multiple meanings.
Despite the outcomes obtained, we have presented in the discussions the elements necessary to improve in the
future the automatic classification of documentation types.

2.3 Document Readability

Software documentation not only has to be composed of different sections [34], it has to fulfil certain levels of
details and visual formatting [37], but most importantly it must readable and understandable [1]. For this last
reason, we have included in CROSSMINER a tool for calculating the readability of the software documenta-
tion.

In CROSSMINER, readability has been defined as which should be the educational level of a reader in order
to understand a particular text. This definition is based on a series of works, such as [5], [20], [6], that have
explored how to determine the difficulty of a text [41]. It should be noted that the selected definition of
readability, as stated by [40], do not consider aspects such as grammaticality, coherence or structure. However,
to assess these elements automatically is still challenging, despite multiple approaches have been proposed as
indicated by [9].

In the following section, we summarise the most relevant state-of-the-art metrics regarding text readability.
Then we present the metric that we have chosen for CROSSMINER and its justification and some discussion
revolving this subject.

2.3.1 Related Work

In the next paragraphs, we explain the most representative metrics that have been defined for determining the
readability of a text based on the level of education that a reader must have in order to comprehend the text.

• Automated Readability Index (ARI): The ARI [33] is designed to gauge the understandability of a
text. Its output is an approximate representation of the U.S. grade level needed to comprehend the text
as shown in Table 9. The ARI relies on a factor based on characters per word, number of words per
sentence and number of sentence per document. The formula for calculating ARI is given by Equation 1:

ARI = 4.71

(
characters

words

)
+ 0.5

(
words

sentences

)
− 21.43 (1)

• Coleman-Liau Index: The Coleman-Liau Index [5] is another metric designed to gauge the under-
standability of a text. Like the ARI, it relies on characters and its output approximates the U.S. grade
level thought necessary to comprehend the text. However, unlike ARI which takes the totality of words
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Score Age Grade Level
1 5 - 6 Kindergarten
2 6 - 7 First/Second grade
3 7 - 9 Third grade
4 9 - 10 Fourth grade
5 10 - 11 Fifth grade
6 11 - 12 Sixth grade
7 12 - 13 Seventh grade
8 13 - 14 Eight grade
9 14 - 15 Ninth grade
10 15 - 16 Tenth grade
11 16 - 17 Eleventh grade
12 17 - 18 Twelfth grade
13 18 - 24 College student
14 24+ Professor

Table 9: U.S. Grade Levels with Age

and sentences, Coleman-Liau takes the average number of words and sentence in a scope of 100 words.
Its formula is given by Equation 2:

Coleman-Liau = 0.0588L− 0.296S − 15.8 (2)

where L is the average number of letters per 100 words and S is the average number of sentences per
100 words.

• Flesch-Kincaid Index: The Flesch-Kincaid Index [24] was designed to indicate how difficult it is to
understand a document. There are two types, the Flesch Reading Ease Index and the Flesch-Kincaid
Grade Level Index. Both of them use the same core metric i.e., a hybrid of character and syllables,
although they have different weighting scale. Readability with Flesch Reading Ease index is done by
scoring a document between 1 and 100. However, the result is not immediately obvious to the user
because its interpretation requires a conversion table to make sense of the score. For example, scoring
between 70 to 80 is equivalent to school grade level 8, which means that the document should be easy
to read, but this is not immediately obvious as people would normally associate higher scores to ‘more
difficult’. This was resolved in Flesch-Kincaid Grade formula which uses the U.S. grade table directly
to represent scores. Thus, a document scored 8, means that the average reader has to have a grade 8 level
of reading, or above, to understand it. Basically, the results of the two methods correlate approximately
inversely such that a text with a comparatively high score on the ‘Reading Ease’ have a lower score
on the ‘Grade-Level’. The ‘Reading Ease’ is calculated with Equation 3 while the ‘Grade-Level’ is
calculated with Equation 4.

Reading Ease = 206.835− 1.015

(
total words

total sentences

)
− 84.6

(
total syllables

total words

)
(3)

Grade Level = 0.39

(
total words

total sentences

)
+ 11.8

(
total syllables

total words

)
− 15.59 (4)

• Gunning-Fog Index: The Gunning-Fog Index [20] is a test indicating the number of years of formal
education required by an individual in order to easily understand a text on the first reading. For example,
a document with fog index of 13, has the reading level of a U.S. college student (see Table 9). Documents
produced for a wide audience generally require a fog index of less than 12. Fog index uses a hybrid
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of character and syllables and its formula is given by Equation 5. A word is ‘complex’ if it consists of
three or more syllables.

Gunning-Fog = 0.4

[(
total words

total sentences

)
+ 100

(
complex words

total words

)]
(5)

• Dale-Chall Index: The Dale-Chall Index [6, 4] provides a numeric score that represents comprehension
difficulty when reading a text. Unlike Gunning-Fog index that computes complex words with syllables,
Dale-Chall considers a word to be difficult, if it does not appear on a list of 3, 000 words that groups
of fourth-grade American students could reliably understand. Its readability scale is slightly different
from the other indices as shown in Table 10. The formula to calculate the scores is given by Eq 6. If
the percentage of difficult words is above 5%, then 3.6365 is added to the raw score to get the adjusted
score; otherwise the adjusted score is equal to the raw score.

Dale-Chall = 0.1579

(
difficult words

total words
× 100

)
+ 0.0496

(
total words

total sentences

)
(6)

Score Grade Level
4.9 or lower easily understood by an average 4th-grade student or lower
5.0 - 5.9 easily understood by an average 5th or 6th-grade student
6.0 - 6.9 easily understood by an average 7th or 8th-grade student
7.0 - 7.9 easily understood by an average 9th or 10th-grade student
8.0 - 8.9 easily understood by an average 11th or 12th-grade student
9.0 - 9.9 easily understood by an average 13th to 15th-grade (college) student

Table 10: Dale-Chall Readability Scale

2.3.2 Readability Tool for CROSSMINER

The document readability tool implemented in CROSSMINER is based on the Dale-Chall index. We have
selected this metric due to multiple aspects. In first place, splitting words into syllables is not a straightforward
task, as it relies mostly on phonetics [26]17 In addition, using vowel count i.e., syllables to determine word
complexity, has some limitations. For example, the word ‘interesting’ has four syllables but is not generally
thought to be hard-to-read. A short word can be difficult if it is not used very often by most people. This makes
Dale-Chall index more suitable because it considers a word to be ‘difficult’ if it is not on a pre-defined word
list[6]. Finally, to implement this tool, we can rely on tools that we have already introduced in CROSSMINER
and that were presented in Deliverable 3.4.

As shown in Equation 6, Dale-Chall index requires the total number of ‘words’, ‘sentences’ and the ‘difficult
words’ found in the document to be analysed. To determine these counts, we have used in CROSSMINER
the tools NLP4J, a library that allow us processing text and get information regarding tokens, lemmas, sen-
tences and Part-of-Speech (POS); NLP4J has been previously described in Deliverable 3.3 and Deliverable
3.4. Specifically, in order to calculate Dale-Chall, we first extract the lemmas from the text to analyse and fil-
ter them according to their POS tag; the filtration consist in getting only lemmas that correspond to words,

17In the state-of-the-art there have been described some tools, such as the one from [41], to determine the syllables in
a text, however we did not arrive to have access to these tools.
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such as nouns, verbs, adjectives. This has to be done because the output given by the lemmatiser includes nor-
malised punctuation marks, numbers, among other information that should not be considered as a word. With
the filtered lemmas, we can determine the number of words present but also the number of difficult words; this
last task is done by determined how many lemmas from the text match the words that have been defined as fa-
miliar words. As NLP4J calculates automatically the number of sentences, then calculation of Dale-Chall is
straightforward once the number of words and difficult words has been set.

2.3.3 Discussion

A document may yield low readability score because they used difficult words less frequently. However, a
document may still be difficult to read if the grammar is bad. Likewise, badly executed ideas written with
mostly easy-to-read words may yield good but misleading readability score.

Furthermore, readability varies massively between readers, particularly in analysing software engineering doc-
uments in which the presence of specialised terms or phrases is inevitable. For example, the phrase ‘on the fly’
is generally used in software engineering to indicate that a computer program runs without interruption. All
the words in the phrase are easy to read so its readability would most likely be good. However, less technical-
minded readers would find it difficult while experienced developers would find it easy.
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2.4 License Analyser

Open source software projects (OSS) plays a crucial part in modern software engineering whether it be for
personal, academic, scientific or commercial projects. Software developers can utilise OSS projects to create
new innovations by alleviating their time and financial resources, but also to avoid “reinventing the wheel”
[15]. OSS projects are more than just source code and may contain other assets which accompany the source
code such as; models, configuration files and supporting documentation.

Open source software projects and their assets (intellectual property) are often accompanied by an open source
license which governs their use. A license is a legal instrument which specifies the capacity in which the
asset it accompanies may be used, modified and or shared under [23]. As they are a legal instrument, the
language used is often formal. So why is it important for software developers, and product managers to be
aware of open source licenses? Understanding the license (and its contents) is vital to avoid implications
caused by derivative works18. Implications caused by derivative works could arise due to incompatibility with
a business model/objective or by violating clauses within the license agreement [8]. Derivative work(s) with
license implications or compatibility may lead to legal consequences, impact the ability to make profit (both
financially and or from contributions made by the open source community) or affect commercial objectives
[42, 29].

To further complicate things, projects often combine multiple OSS projects to achieve a common goal. How-
ever, not all licenses are legally compatible with one another. For example if you were to develop software
which uses a library with an Apache Licence version 2.0 and another with a GPL version 2.0, you would
legally not be able to since Apache Licence version 2.0 is not compatible with General Public License (GPL)
version 2.0 as it contains certain patent termination and indemnification provisions. However, if an alterna-
tive library was found with a GPL version 3.0 these two libraries from a legal perspective would be compatible
[12].

The licenses associated with intellectual property can be found in several forms and locations depending on the
chosen license. For example, works licensed with Apache 2.0 are required to include a boiler plate (header) in
every file related to the project, Figure 1 is an example taken from source code. Licenses such as EPL require
the body of the license to be included alongside your work, the example shown in Figure 2 has been taken from
the CROSSMINER project. Other such as BSD requires fields to be populated within a template and include
either alongside or within your work as presented in Figure 3.

Knowing what licenses are linked to specific assets within an OSS project is valuable for any software engi-
neer and product manager, in the sense that they can evaluate if this OSS is suitable and compatible with their
software needs. The ability of doing this kind of analysis was not present in OSSMETER. Thus, in CROSS-
MINER, we have developed a classifier based on language models that detects open source licenses.

In the remaining sections, we present background information and related works specifically the detection of
licenses. In succession, we proceed to present details of the methodology used for experimentation, followed
by a discussion about the data set utilised for the experiments. In the latter part of this section we present
details of the experimental and evaluative settings, results obtained from experimentation, a discussion of the
results and a conclusion.

18Derivative works— Are works that either use, extend or make changes to the intellectual property
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Figure 1: Apache License 2.0 Boiler plate taken from org.apache.commons.compress.utils

Figure 2: EPL License Screenshot from CROSSMINER

Figure 3: WebProtégé BSD licensed documentation
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2.4.1 State-of-the-art

As already highlighted, the purpose of this work is to develop a License Analyser which is capable of data-
mining textual sources for existence of a software license and if present, identify which licence it is. Through-
out this section we present the state-of-the art and related works surrounding license detection and analysis
affiliated to software engineering followed by a discussion and summary of the works presented and their
compatibility with the CROSSMINER platform. Please note that works presented in this section are a selec-
tion from scientific, commercial and open source communities.

Developed by GNU, LibreJS is a web browser add-on written in JavaScript (JS) for GNU IceCat and Mozilla
Firefox which detects free OSS licenses in order to block the execution of non-free / non-trivial JS on web-
pages. It achieves this using a 2 layered approach. The first layer intercepts HTTP responses and rewrites
their contents after analysing the JS code for license headers. The second layer analyses the web-page, that is
scheduled to be executed, by observing the outcome of the web-browser parser; this acts as redundancy method
in case the first layer is unable to detect JS. Currently, the tool is capable of identifying a total of 22 free OSS
licenses19[7].

Osler Code Detect is a free web-based application, provided by Osler20that locally scans software project di-
rectories to detect OSS licenses found in source code[29]. Based on the outcome of the analysis, this tool
provides information relating to the licence distribution, license considerations and which were the files con-
taining the license(s). It is worth noting that currently this tool has no publicly available API, does not disclose
which licenses it is able to detect and it is required to manually select the project to be analysed.

FOSSID is a commercial software composition analysis tool kit which scans code for open source licenses
and vulnerabilities[11]. It is available as both a web-based application and CLI (command line interface) .
The web-based application has been designed for software developers to conduct open source compliance and
audits. The CLI tool can be integrated into a DevOps life cycle to perform automatic compliance checks on
software products. It boasts having the fastest open source software scanning engine which includes artificial
intelligence to eliminate false positive results.

Developed by German et al. [15], Ninka is a license detection algorithm, written in Perl, specifically de-
signed for identifying 112 types licenses embedded in source code. The algorithm consists of 6 stages, each is
summarised below:

1. License statement extraction - Extracts comments at the head of the source code
2. Text segmentation - Performs text pre-processing and sentence segmentation
3. Equivalent phrase substitution - Replaces known phrases with equivalent normalised variations from

a dictionary consisting of 12 phrases
4. Sentence filtering - Splits a sentence into legal and non-legal parts21

5. Sentence-token matching - Using regular expression extract known sentence tokens22

6. License rule matching - Using a series of 126 license rules to match the results from the previous step
to determine licenses

19LibreJS - A full list of the supported free OSS licenses can be found
https://www.gnu.org/software/librejs/manual/librejs.pdf

20Osler is a leading Canadian Law firm with expertise in areas of technology such as AI, Intellectual Property and
Block Chain.

21Achieved using a list of 82 known (keywords)legal terms
22There are a total of 427 known sentence-token expressions

Page 20 Version 1.0
Confidentiality: Public Distribution

30 June 2019



D3.5 Mining Documentation and Code Snippets

The authors of Ninka, evaluated their tools against other existing tools including FOSSology [18], ohcount23

and OSLC24 and concluded that it was both faster and more accurate than each of it competitors.

The go-License Detector [36], developed by the source{d} team, is an open source license detector written
in GO . The tool utilises the SPDX license list and is capable of identifying ≈380 OSS licenses. It favours
annotating projects with false positives over false negatives (fuzzy matches) for data mining purposes. The
algorithm consists of 8 stages:

1. Find files in the root directory which may represent license files (E.g. LICENSE, license.md).
2. Convert structured text into plain text.
3. Normalise text according to SPDX guidelines.
4. Split the text into unigrams and build the weighted bag of words.
5. Calculate Weighted MinHash.
6. Apply Locality Sensitive Hashing and pick the reference licenses which are close.
7. For each of the candidate, calculate the Levenshtein distance.
8. Identify license based on a computed similarity score.

The tool was evaluated using a reference data set consisting of 1000 most starred repositories on GitHub25

against other projects including GitHub’s built-in license detector [16], Google’s licenseclassifier[19] and
Amazon’s askalono[3]. The evaluation concluded that the go-license-detector has the highest detection rate
(99%) and the lowest time to scan (13.5 seconds)[35]. Despite the high level of accuracy, it should be noted
that the testing data set is not manually annotated. In fact, the authors consider that as all the downloaded
repositories have licence, their detector should always find one; but there is no evaluation regarding if the
detected license detected the correct license.

ScanCode [28], developed by nexB, is a comprehensive tool kit, implemented in Python, capable of detect-
ing licenses, copyright notices, package manifests and dependencies from a given code base. It was originally
developed to support their own software auditing services and is used by many industry leading open source
organisation including Eclipse Foundation, Red Hat and OpenEmbedded.org. In contrast to the other related
works, ScanCode is capable of extracting text from various sources including; source code, binaries and com-
pressed archives. The text extracted is then passed through an extensible rules engine to detect ≈1000 open
source licenses.

Unlike other works, the work of Vendome et al. [42] focuses on classifying exceptions which are appended
to OSS licenses, rather than detecting license types. Vendome et al. specifies that under certain scenarios,
licenses are modified by developers to include additional restrictions, referred to as exceptions. Exceptions
that are appended to a license modify the standard and widely understood terms of the original license and are
important factor to consider for license compliance analysis. Using a synthetic data set, they utilised Weka26

to experiment classifying license exceptions using the following machine learning techniques (decision trees,
Naïve-Bayes, Random Forest and State Vector Machines).

Except for the work of Vendome et al. [42], each tools presented throughout this section share a single com-
monality, which is that they all provide methods for identifying licenses within source code. Some also looked
for files which could be considered as a license in the case of Osler. However, ScanCode is the most compre-
hensive as it extends the search of licenses further and is capable of identifying licenses inside binary files.

23ohcount - https://www.openhub.net/p/ohcount
24https://sourceforge.net/projects/oslc/
25as of February 2018
26Weka - Waikato Environment for Knowledge Analysis is a suite of machine learning software written in Java, devel-

oped at the University of Waikato, New Zealand.
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Interestingly, each of the related works approach the detection of licenses differently. Some have opted to use
artificial intelligence and machine learning for classification such as FOSSID or the work of Vendome et al.
[42], others have utilised rules based on keyword matching. Although the results presented in Vendome et al.
[42] looked promising, machine learners in the context of licenses detection are not as easily extended when
compared to rule-based and keyword identification approaches. Furthermore, a large and robust dataset would
be required for training and a multi-class machine leaner capable of assigning over 380 labels. That said,
introducing new rules could just as easily have a negative impact and would require vigorous testing. Finally,
we have not observed any tool during our search which also considers software documentation as a potential
source of licenses. With regard to CROSSMINER’s requirements we have not found a suitable tool which
satisfies both our requirements and complies with our own licensing guidelines.

2.4.2 Dataset

During the search for a suitable data set, we discovered 2 viable data sets from reputable open source organisa-
tions. The first source of data we considered was developed by Open Source Initiative (OSI) 27. OSI’s mission
is to actively maintain the “Open Source Definition” for the open source community by approving licences that
are compliant with the Open Source Definition. At the time of writing, there are a total 97 (82 active and 15 re-
tired/superseded) licences approved by OSI. Licenses are presented on-line and have to be manually extracted.
Resulting in the dataset consisting of a license name and text from the license body.

The second dataset we considered was “SPDX License List”28 developed by the SPDX workgroup29. Unlike
the OSI dataset, this list is composed of 389 (single) licences commonly used in free, open source and other
collaborative software or documentation. In addition to just the licence text, the data set provides meta-data
associated with licence which included elements such as; SPDX identifier, its deprecated status, If it is OSI
compliant, If it is free software (Fsf Libre), licence body template, licence header template, licence comments,
Relationship to other licences. Furthermore, the data is made freely accessible and is available in various open
source formats including JSON. It is worth noting that this data set is also provided with some guidelines30 on
how the data should be used.

We opted to use the SPDX Licence List over the OSI data as this was superior from may different perspectives.
Not only was the number of licences greater, the data was structured and well-defined providing us with the
capability to recognise licence bodies and license headers too. However, this data set does not contain any
instances of multi-license licenses.

2.4.3 Methodology

Our intention for CROSSMINER is to provide a license analyser tool which is capable of detecting and speci-
fying open source licenses found within documentation.

We proposed to experiment detecting open source licenses using a language model. A language model, by def-
inition, refers to the probability distribution of word sequences31 in a given document or corpus[22]. Language
modelling has been applied in areas of NLP were predicting upcoming words or the likelihood of a sentence

27Open Source Initiative - https://opensource.org/licenses
28SPDX Licence List - Available at : https://github.com/spdx/license-list-data
29The SPDX workgroup is hosted by the Linux foundation and consists of representatives from more than 20 organi-

sations
30SPDX License List Guidelines - https://spdx.org/spdx-license-list/matching-guidelines
31In the context of this work a sequence of words refers to n-Grams.
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is vital for completing a task such as in speech/hand writing recognition, spell checking and predictive text.
The decision of using language models, instead of any other machine learning approach, is that we do not have
enough data to train, in the sense that once we have observed a license text we might have seen all the licenses
of the same time. Furthermore, by recollecting licenses that are actually used by software projects, a classi-
fier might learn to differentiate them only by elements such as date or names of organisations. In fact, we have
considered the detection of licenses as a language identification problem, where for a given text it is necessary
to calculate the probability of being written in specific languages.

Language models can be computed via numerous techniques such as Hidden Markov Models (HMM), Tri-
gram frequency vectors and n-grams based text categorisation [30]. We have opted to use n-grams based text
categorisation approach for computing our language models, which in turn is based on conditional probabili-
ties. To estimate the conditional probability of an n-gram, we utilised Maximum Likelihood estimation (MLE).
MLE estimates the conditional probability of an n-gram model by “dividing the observed frequency of a partic-
ular sequence by the observed frequency of a prefix” [22] and is achieved using formula presented in Equation
7

P (wn|wn−1
n−N+1) =

C(wn−1
n−N+1wN )

C(wn−1
n−N+1)

(7)

where P (wn|wn−1
n−N+1) is the conditional probability of seeing word wn after having observed a sequence of

words (wn−1
n−N+1); C(wn−1

n−N+1wN ) is the number of times that the sequence of words wn−1
n−N+1wN has been

seen in a corpus and C(wn−1
n−N+1) is the number of times this collection of words has been observed in the

same corpus.

The probability of a text, i.e. a collection of n-grams, is calculated using the Chain Rule Probability as shown
in Equation 8, where we multiple the conditional probabilities of each n-gram present in the text.

P (X1...Xn) = P (X1)P (X2|X1)P (X3|X2
1 )...P (Xn|Xn−1

1 ) (8)

One of the limitations of language models is that they are sensitive to unseen n-grams, i.e. sequence of words
that did not occur in the corpus in which the language model was build. Unseen n-grams causes that the
probability of a text is zero, because the conditional probability of an unseen n-gram is zero. To surpass this
limitation, there are methods, such as Laplace Smoothing, that consists in smoothing the language model, in
other words, to remove a small portion of the probability of every seen n-gram and giving it to a conditional
probability that will represent unseen n-grams [22].

To solve the cases of unseen n-grams in the license analyser, we have used a naïve approach that consists in
giving to every unseen n-gram a conditional probability of log(100). This decision is based on the fact that
this probability will be used only to differentiate between languages models, but most importantly to prevent
that languages models with fewer n-grams produce the greatest probability values.

The language models used for the license anayser were generated by processing the data set regarding SPDX
License List (see Section2.4.2). Therefore, we incorporated into our methodology SPDX’s guidelines on how
this data should be processed to ensure that matches are consistent to avoid potential non-matches and confu-
sion for end users. In Table 11 that follows we describe the conditions of use and the actions we have take to
comply with the guidelines that are applicable to this work.
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Table 11: Methodology : Conditions and Actions
Condition Action

License Name To avoid a license mismatch merely be-
cause the name or title of the license is dif-
ferent than how the license is usually re-
ferred to or different than the SPDX full
name.

Any license capable of being detected by
the license analyser should only be identi-
fied by their SPDX Full Name only.

Capitalisation To avoid potential non-matches due to the
use of upper case and lower case letters

All text that is processed should treat all
letters as lower case

White space To avoid the possibility of a non-match due
to different spacing of words, line breaks,
or paragraphs.

All white space will be considered as a sin-
gle blank space.

Punctuation Because punctuation can change the mean-
ing of a sentence, punctuation needs to be
included in the matching process

All punctuation is included as-is in the
source.

The methodology consisted of two stages, presented in Section 2.4.3.1 and Section 2.4.3.2, respectively. The
first focuses on the formulation of a license hierarchy and the second focuses on language modelling.

2.4.3.1 Creating a Grouped License Hierarchy

Licenses where grouped automatically based upon license name to form. Each license group consisted of a
minimum of one license text and where applicable license revisions and license headers.The objective creat-
ing the hierarchy was to reduce the time required for computing scores for each model as a threshold is used
to disregard low scoring groups, license groups. This processed resulted in a total of 266 license groups32.
Presented below in Table 12 is a sample taken from the hierarchy consisting for example the license groups
which is concerned with Apache, EPL and NASA licenses.

Table 12: Grouped License Hierarchy Example
Apache Licenses Eclipse Public License NASA License
Apache License v1.0 Eclipse Public License v1.0 NASA v1.3
Apache License v1.1 Eclipse Public License v2.0
Apache License v2.0
Apache License v2.0 (header)

2.4.3.2 Processing: Creating a language model

Each of the 383 JSON documents associated with licenses within the hierarchy was subjected to the same
procedure described below. Note text refers to the licenseText and where applicable standardLicenseHeader
fields found within the JSON document.

1. To ensure that we are compliant with the guidelines defined by SPDX the text was subjected to a pre-
processing stage which consisted of the actions described in Table 11.

2. Using the pre-processed text from step 1, a language model was computed for the associated license text
based upon trigrams and stored.

32Due to its size the complete license hierarchy has been omitted from this deliverable
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2.4.4 Implementation

The License Analyser implemented into CROSSMINER has been developed using the methodology described
in Section 2.4.3 and was built using the Prediction Manager33 and the third party library Jackson34. The
License Analyser provides CROSSMINER with the ability to detect over 380 open source licences within
plain text sources, which includes software documentation, source code and configuration files. It works by
subjecting the input to the same processes described in Table 11. It then proceeds to process the collection
of trigrams from the text, first calculating for each license group a score. Groups which surpass a threshold
then have a score computed for each license and license header present. It is important to note for unknown n-
grams we implemented a “add-on” smoothing method which assigned a static value. In both cases, scores are
calculated by accumulating the probabilities of known trigrams and unknown trigrams.

The License Analyser accepts a String or a List<String> as input and returns a LicensePrediction or
List<LicensePrediction>. Table 13 defines the fields present in the License Prediction object.

Table 13: LicensePrediction object description
Variable Name Type Description
licenseFound Boolean Flags true if a licence has or false if a license has not

been found.
isGroup Boolean Flag true if a the prediction is a license group or false

if the prediction is not a license group.
isHeader Boolean Flag true if a the prediction is a header or false if the

prediction is not a header group.
licenseName String If a license is found the SPDX full license name is

provided
licenseGroup String The name given to the license group (this is populated

only if a license is found)
score Double The score represents the confidence value awarded by

the language model) closer to 0 indicates higher accu-
racy.

nGramsMatchedPercent Double The percentage of ngrams that matched perfectly with
the language model for the predicted license.

The License Analyser is also accompanied by two other tools. The first tool extends the use of the dataset,
by allowing software developers to query the hierarchy model for the body and header templates of known
licences, so they can be quickly added into source code or documentation during development or access the
licenses’ associated meta-data to obtain additional information concerning the licence. The second tools enable
new versions of the language, license hierarchy and licence statistic models to be generated when new licenses
have been added to the SPDX License list.

33Prediction Manager was developed during Deliverable 3.4
34Jackson - https://github.com/FasterXML/jackson
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2.4.5 Evaluation

This section presents the evaluation of the License Analyser. More specifically, we provide details surrounding
the data set, metrics and evaluation settings used to evaluate the License analyser. This section concludes with
a presentation and discussion of the results.

2.4.5.1 Testing Dataset

To evaluate the License analyser, we chose to exploit the same testing corpus35 developed by nexB to evaluate
ScanCode license detection tool. Several factors contributed to our decision to use this data set. Out of the
datasets that we discovered it was the largest. Second it consisted of a mixture of sources of textual data related
to software engineering and finally, it was the only that was a dataset that was annotated.

The nexB dataset consists of 1191 text-based files in various file formats. Each file has a corresponding
annotation file in YML format, which contains meta-data that includes information such as License Expressions
and Notes 36. A License Expressions refers to the license or licenses that have been disclosed with the file.
These will be referred to as annotation labels for the remainder of the evaluation. The Notes field includes
miscellaneous comments left by nexB developers and this is also where they denote that a file contains no
license.

However, in order to effectively utilise the nexB data required addressing several issues.

• The first relates to how we should handle licenses unknown to the License Analyser. As discussed in
Section 2.4.2, the License Analyser from a theoretical perspective is capable of detecting 389 OSS li-
censes. However, the scancode-toolkit is also capable of detecting propitiatory licenses which our tool
has not been trained to detect. Therefore, for this evaluation we treat all files with unknown licenses as
if they did not contain one, i.e. - no license found.

• The second issue is related to the naming convention used. In the nexB dataset, annotation labels ex-
ist for OSS and priority licenses since the scancode-toolkit was designed to detect both. However,
upon initial investigation, the naming convention used for the annotation labels do not align with those
included within the SPDX License List with respects to the naming convention or guidelines. For ex-
ample, BSD family of licenses names also are known by different aliases throughout the open source
community. For example the BSD 2 Clause License is also referred to as FreeBSD License or Simpli-
fied BSD License37. In the case of the nexB dataset it is annotated as FreeBSD. However, in the SPDX
License List it is identified as BSD-2-Clause.

• The final issue is regarding annotation labels for files with multi-license licenses. Within the nexB
dataset, these are identified by the presence of the keyword AND for example:gpl-2.0-plus AND lgpl-
2.1-plus AND mpl-1.1. Furthermore, the corpus also identifies known licenses which include custom
expressions and declarations; treating them as a unique annotation label by appending the keywords
expression and declaration to the end of the label.

Therefore to address the challenges discussed above, it was important to pre-process the nexB data set to
define a mapping procedure to allow a comparison between the output from the License Analyser and expected

35nexB testing corpus can be located here:
https://github.com/nexB/scancode-toolkit/tree/develop/tests/licensedcode/data/licenses

36Not all meta-data included within the annotation file is useful for this evaluation
37BSD Licenses Wikipedia Article: https://en.wikipedia.org/wiki/BSD_licenses
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annotation labels. We addressed these challenges by subjecting, annotation labels to a normalisation procedure,
similar to that described in Table 11. This removed all spaces, symbols and punctuation from the name as-
well-as convert it into lower-case. Additionally, rules were also included in the normalisation method to
address the remaining outliers. Annotation labels were then also parsed to detect keywords such as AND,
OR, EXPRESSION and DECLARATION, converting them into multiple annotation labels. Finally, unknown
licenses annotations were converted to no license found.

After the normalisation procedure defined above, the testing corpus contains a total of 95 known labels from
SPDX License List(since all unknown licenses were converted).

2.4.5.2 Evaluation Metrics

The results obtained will be evaluated based from various perspectives using the following evaluation metrics
described below:

Precision : measures the ratio of correct positive predictions to the total predicted positives. It is cal-
culated using Equation 9. Where TP is the number of true positives, and FN is the frequency of false
negatives.

Precision =
TP

TP + FN
(9)

Recall : measures the models ability to identify all relevant instances. Recall is calculated using Equa-
tion 10 below; where TP is the number of true positives, and FP is the number of false positives.

Recall =
TP

TP + FP
(10)

F-Score : The F-Score or F-1 is the harmonic mean of Precision & Recall and measures the models ac-
curacy. It is calculate using the Equation 11 below.

F-Score = 2 · Precision× Recall
Precision + Recall

(11)
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2.4.5.3 Evaluation Settings

Then each file within the testing corpus will be subjected to the same evaluation procedure as described in the
steps below.

1. Extraction of raw text from the file document, using Apache Tika as discussed in Section 2.2.2.

2. Convert raw text into plain text using the Plain Text Converter developed in Deliverable 3.3

3. Pass the plain text to the license analyser (this will pre-process the text based upon the actions described
in Table 12) and return a classification instance. The instance will be processed and the resulted stored.
Please note that a result is considered is considered correct if the output from the License Analyser is
present in the list of annotation labels for that particular document.

2.4.5.4 Results

The results per evaluation metric were computed for the language modelling approached used with the License
Analyser. For comparison, we also computed values for the Most Frequent Class (MFC) and Random Class
baselines (RC). The Most Frequent Class baseline, considers all predictions to be that of the most frequent
class present within the dataset, whereas the Random Class assigns a prediction at random. The results for all
are presented in Table 14.

Table 14: Licence Analyser Evaluation Results

Precision Recall F-Score
Random Class Baseline 0.002 1.000 0.003
Most Frequent Class Baseline 0.147 1.000 0.259
Language Modelling 0.205 0.810 0.327

It is important to consider each evaluation metric in order to effectively evaluate the language modelling ap-
proach from varying perspectives. Each of the tests performed similarly with respects to Recall shared a
commonality in which each had a considerably high recall rate. This means suggests that each test was in-
clusive. However, when also taking into consideration the precision, it identifies that many of the predictions
made were actually incorrect.

Arguably the most important metric to consider is the F-Score as this is an indicator of the models’ overall
accuracy and takes into consideration both precision and recall. As expected the RC baseline with regards
to F-Score had the worst performance, this is attributed to there being over 380 potential classes available to
predict and only 96 are found within the data set. The MFC baseline is more performing in comparison RC
baseline. However, the language modelling approach shows a marginal (+ 0.068% ) improvement over the
MFC.

Although not ideal, the language model approach is more performing than both the RC and MFC baselines.
However, there is still room for considerable improvement.
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2.4.5.5 Discussion

Detecting licenses is not a straight forward task. The results presented in Section 2.4.5.4 represent our initial
evaluation of the current License Analyser. All though there is plenty of work surrounding the detection of
licenses in source code, to the best of our knowledge, there is no work in scientific, commercial or open source
communities which identifies licenses in documentation related to software.

One clear difficulty we faced is related to the limited availability of data-sets that are both balanced and large
enough for training and testing of a classifier. The data sets found during the course of this work were all
considerably small in comparison to a large number of OSS licenses. To put things into some perspective,
the SPDX dataset was the most comprehensive list we discovered, containing over 380 commonly found OSS
licenses. Each language model that we trained was only on a single document that consisted of the license
template. Creating a dataset from scratch, that is annotated, balanced and large enough, requires a significant
amount of investment with respects to time and resources and was not feasible for this deliverable.

During the normalisation procedure applied to the nexB dataset, we transformed all annotations that our model
is not trained on i.e. proprietary licenses, to have the annotation no license found. However, in hindsight, this
decision may have been naive, as theoretically these files still contain some kind of license. We hypothesise
that there may be some overlapping between the vocabulary used in proprietary licenses and OSS licenses
since both types are indeed legal documents and the terminology used is more restrictive. This hypothesis is
also supported by the outcomes of some informal testing performed during the development of the License
Analyser. In one particular case, we used a document which contained an MPL (Mozilla Public License)
and it was classified incorrectly as NPL (Netscape Public License). However, when we investigated it was
discovered that the scores computed by the tool were almost identical, suggesting that both licenses shared a
common vocabulary. Upon inspection there where only two words that distinguished one license from another,
making it difficult to classify. Therefore further work is required in order to address or implement methods to
reduce the impact of overlapping vocabulary between language models.

As with many of the tools discussed in Section 2.4.1, the License Analyser attempts to identify the exact
license present within a document. More specifically, it outputs a single label that received the best score.
As mentioned in the introduction to this section, this knowledge is important for assessing if an OSS project
is compliant with the objectives of the software being developed. However, in future work, it may also be
worth considering the possibility of returning multiple labels in a similar approach to that used in the go-
License Detector, preferring coverage over single incorrect predictions to assist developers and managers in
the identification process; since are a legal document and no classier is right 100% of the time. Again this
would require further exploration and testing.

2.4.6 Conclusion

Understanding the type of license used by open source projects is a vital factor for software engineers and
product managers. Whether it is during the evaluation of an OSS project to determine if it is compatible with
their objectives, to understand their legal obligations when using the works of other or to select a compatible
license for their derivative work. Unlike other works discussed, the objective of the License Analyser for
CROSSMINER was to design and develop a tool which is capable of analysing textual sources such as software
documentation to data-mine the existence of license and determine what license it is based upon the language
used in order to fulfil requirement U115 presented in Table 1. Although the results are not ideal, the language
models are more performing than both the random class and most frequent class baselines. However, further
evaluation, optimisation and work in the near future still required to improve its performance.
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3 Identification of API changes in textual sources

APIs can be in constant evolution, for example, they can create new methods in order to support new features,
or modify current ones to improve outcomes, even remove methods that are unsupported. Frequently, API
changes are for good, however, in occasions these changes come with a price, products that use old versions of
an API and want to migrate to more recent version might break. The approach that users and developers tend
to follow, when migrations problems arise, is to look at the documentation or search on the Internet. However,
to search a solution in question answering websites, such as Stack Overflow, is not only time-consuming, it can
be erroneous or without the expected quality for a good understanding of the necessary changes to do [31, 27].
Even more, in occasions the software documentation do not provide enough information for dealing with an
API migration [39].

To solve the problem described previously, the scientific community has worked on different approaches to
provide users and developers with methods that can make easier the implementation of changes in APIs, such as
those described in Deliverable 2.738. In this part of Deliverable 3.5, we present the work that has been product
from the collaboration between Centrum Wiskunde & Informatica (WP2) and Edge Hill University (WP3) for
assisting software developers and users in migration API issues. Specifically, we explain how the detection
of changes in Java APIs can be used along NLP tools to determine which discussions and posts talk about
migration problems. The goal is to provide information to developers regarding issues that users are having
due to changes in an API, and in consequence, encourage them to improve their software documentation, while
to users present them with discussions that could help them to solve API migration issues.

3.1 Detecting changes in Java APIs

For detecting changes occurring in a Java API, we are using the framework and tool developed by our partners
from Centrum Wiskunde & Informatica, called Maracas. This tool has for objective the analysis of Java APIs
through the time and assist developers in the process of migration from one version of an API to a more recent
one. Maracas, more specifically, indicates which elements, i.e. packages, methods and fields, in a Java API
have been added, changed or removed. As well, it determines the possible effect of these changes on software
that implements the modified API. See Deliverable 2.7 and Deliverable 2.8, for a more detailed explanation of
Maracas.

In this deliverable, we make use Maracas to get the list of APIs’ elements that changed and create searching
patterns that can be used to detect textual sources describing topics regarding the migration of API versions.
Specifically, every day of analysis in CROSSMINER, Maracas return us a delta which contains the elements
changes in the API (See Deliverable 2.8), from which we extract the data that will be used in the next process.

3.2 Searching and matching migration problems

In order to find migration problems within discussions from all our different sources of information, such as
issue trackers or mailing lists, we have designed a method that consists of analysing titles and (mail) subjects,
but also the labels defined by a clustering method in order to select which discussions, e.g. bugs, emails,
forums posts, are related to a migration problem. Then, for each selected discussion, we look for the names
of methods that were obtained by Maracas. In the following paragraphs we explain in detail the approach
followed.

38Deliverable 2.7 was developed by Centrum Wiskunde & Informatica (CWI)
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In first place, if the textual source to analyse, e.g. issue tracker, communication channel, contains a subject
or title name, we look for patterns that could lead us to discussions related to API. These patterns have been
defined manually and can express aspects such as “migration problem”, “how to upgrade to”, “method depre-
cated”; moreover, these patterns are based on regular expressions.

As not all the sources to analyse contain a title or subject, and we know that the analysis of subjects and titles is
not 100% accurate39, we decided to take into account as well the output of the clustering tool used in CROSS-
MINER. Specifically, we make use of Lingo, a clustering tool that for a group of texts it generates clusters
but most importantly labels as described in Deliverable 3.4. The generated labels, which are a concatenation
of keywords, are then searched for patterns that could indicate that a group of texts are related to a migration
issue.

Each of the API changes found by Maracas, will be searched in the list of texts and discussion, that was
obtained with the previous approaches, and that might be related to migration issues. This search is done using
a simple match of words in text. If a match is found, we mark the corresponding text or discussion with a flag
that indicates that the topic might have revolved to a migration problem.

39In occasions, it can happen as well, that a user has a migration problem, but it is not aware of it, thus the title or
subject do not make any reference to this.

30 June 2019 Version 1.0
Confidentiality: Public Distribution

Page 31



D3.5 Mining Documentation and Code Snippets

4 Recommendation of snippets and discussions

A main characteristic of CROSSMINER is the possibility of accessing different types of information without
having to leave Eclipse IDE.

In this deliverable, we present a recommender of code snippets and discussions that complement the work
done by our partner from the University of L’Aquila. This recommender, unlike those presented in WP6, is
based on the data that is retrieved, processed and indexed by CROSSMINER. Therefore, it can cover a large
variety of sources, such as bug tracking systems, mailing lists, instant conversations, software documentation,
question answering platforms and social media. Furthermore, it has been designed to be general enough to be
used to retrieve data regarding different programming languages.

The approach used for this recommender consists in generating firstly a query based on the code that an Eclipse
IDE user is implementing at a certain moment. With this query, we retrieve the most relevant entries from
CROSSMINER indexes using ElasticSearch. Then, we focus on the natural language aspects of the retrieved
entries, in order to create a query that is based on natural language elements only. We decided to utilise this
approach due to two reasons. In first place, our partners from Univeristy of L’Aquila have developed a series
of recommenders that are based on the analysis of code. In second place, the expertise of Edge Hill University
in CROSSMINER is the processing of natural language. Therefore, we considered appropriate to boost the
queries for this recommender from a natural language perspective instead from a code one. In the following
sections, we explain in detail the creation of each type of query and which is the method used for ranking the
retrieved elements.

4.1 Query based on code elements

As we indicated previously, the recommender uses in first instance a query that is based on the code that is
being developed by an Eclipse IDE user. This means that we process the code and convert the code into a
query that can be understood by ElasticSearch.

To have access to the code being developed by a programmer, we worked with our partners from FrontEndArt
and University of L’Aquila. CROSSMINER knowledge base can connect directly to Eclipse IDE through the
tools developed by FrontEndArt, while our recommender can have access to the code being developed through
CROSSMINER knowledge base. As we expect to process the code from different programming languages
and not only from Java, we need as input for the recommender the name of the programming language being
developed. Currently, our tool can support: C, Java, JavaScript and PHP. These languages were selected to
fulfil our requirements U66, U67, U68 and U69.

Once the code has been introduced in the recommender, the next step consist in analysing the code and retrieve
the tokens. For this task, we have decided to utilise ANTLR40, a library that generates lexical analyser and
parsers automatically given a grammar. More specifically, we downloaded the grammars that correspond to
the programming languages supported by our recommender, i.e. C, Java, JavaScript and PHP, from ANTLR
repository41 and generated their respective lexical analyser. A lexical analyser is a tool that tokenise a text but
also determines the type of each token. How detailed the type of each token is indicated by the lexical analyser
will depend on the grammar. For example, the grammar downloaded for C, indicates that in int myVar;
there is an element of type int and one of type identifier; the grammar for Java, in contrasts, will indicate that

40antlr.org
41github.com/antlr/grammars-v4
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there are two elements of type identifier. A lexical analyser for code would be analogous in natural language
processing to the output that would be obtained from using a tokeniser with a Part-of-Speech tagger.

After the tokenisation of the code, we filtered the tokens to get only those that would be related to names of
variables, types of variables, names of libraries and names of methods. This was done by identifying the types
of tokens that would be returned by the lexical analyser. In this aspect, we found out that all the generated
lexical analysers, except the one for C, would name the type of this code elements as identifier; in the case of
the lexical analyser for C, only the types of variables would receive a different name, but the rest would be
names as identifier.

One advantage of using only a lexical analyser, instead of including as well a parser42, is that the former
are not affected by syntax errors, while the second ones are. Therefore, the recommender can still provide
recommendations even if the code being programmed contains syntax errors.

In order to determine the relevance of the filtered tokens, we have decided to follow the approach used by our
colleagues from L’Aquila in Deliverable 6.5. This consists in calculating how informative each token is, and
which is the probability of seeing this token. These two values are the basis of Shannon’s Entropy which is
defined in Equation 12.

Shannon’s Entropy(X) =
∑

p(t)× log(1/p(t) (12)

where X is the text to analyse, t is a token from text X and p(t) is the probability of occurring token t in X .
The informativeness of a token is given by log(1/p(t).

Thus, for each token, we obtain its probability p(t) and its informativeness log(1/p(t); the factor obtained
from multiplying is the indicator of how relevant the token is. After all the relevance scores have been defined
for each token, we normalise then between 1 and 4. This normalisation is done by splitting in 4 equal portions
the sorted list of tokens by relevance. A score of 4, is given for first quarter of most representative tokens,
while we give a score of 1 to the last quarter of the list that corresponds to the less representative tokens.

Once we have determined which tokens represent the code and their relevance, we need to construct a query
that can be used in ElasticSearch. In this case, we decided that the best type of query would be a boosted one.
A boosted query, is a request where weights are defined to fine-tune the relevance score of each index entry
that the query retrieves.

import j a v a x . swing . * ;
p u b l i c c l a s s But tonExample {
p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) {

JFrame f =new JFrame ( " Bu t ton Example " ) ;
J B u t t o n b=new J B u t t o n ( " C l i c k Here " ) ;
b . s e tBounds ( 5 0 , 1 0 0 , 9 5 , 3 0 ) ;
f . add ( b ) ;
f . s e t S i z e ( 4 0 0 , 4 0 0 ) ;
f . s e t L a y o u t ( n u l l ) ;
f . s e t V i s i b l e ( t rue ) ;
}

}

Listing 1: Example of a code being developed that will be used as input for the recommender.

42A parser, depending on the grammar, can provide more information if the code is implementing a method or if it is
calling a library.
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To further demonstrate how our tool works, let us consider that we are developing the code presented in
Listing 1. The code is in Java and describes the creation of a button using Swing.

After processing the code described in Listing 1, we can generate the boosted query presented in Listing 2.
In Listing 2, we can observe the different tokens from the code presented in Listing 1 which are boosted in
accordance to how informative each token is, and what the probability of seeing this token is.

GET / _ s e a r c h
{

" que ry " : {
" q u e r y _ s t r i n g " : {

" d e f a u l t _ f i e l d " : " code " ,
" que ry " : " add ^ 1 . 0 OR s e t V i s i b l e ^ 1 . 0 OR b ^ 2 . 0 OR

f ^ 2 . 0 OR J B u t t o n ^ 1 . 0 OR main ^ 1 . 0 OR S t r i n g ^ 1 . 0 OR s e t L a y o u t ^ 1 . 0 OR
se tBounds ^ 1 . 0 OR a r g s ^ 1 . 0 OR swing ^ 1 . 0 OR But tonExample ^ 1 . 0 OR
s e t S i z e ^ 1 . 0 OR j a v a x ^ 1 . 0 OR JFrame ^ 1 . 0 "

}
}

}

Listing 2: Example of a boosted query, which is result from processing Listing 1.

From this query we can retrieve a series of posts, such as the ones represented in Figure 4.1 and Figure 4.1.43

Figure 4: One of the posts retrieved from quering ElasticSearch with the request presented in Listing 2

43stackoverflow.com/questions/311876/ and stackoverflow.com/questions/279781/
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Figure 5: Another pos retrieved from quering ElasticSearch with the request presented in Listing 2

4.2 Query based on textual elements

In order to generate the query based on textual elements, we decided to process the index entries that were
retrieved by the query based on code elements. For each index entry retrieved, we extract the field related to
plain text and apply an algorithm of keyword extraction. More specifically, we extract the keywords of each
text processed using Rapid Automatic Keyword Extraction (RAKE) [32].

RAKE is a fast, unsupervised, domain and language independent algorithm for extracting keywords, either
single or multi-word, from individual documents. The algorithm of RAKE is quite simple and starts by splitting
the input text into candidate keywords. This is achieved by first tokenising the text44 and storing the tokens
in an array. Then the array of tokens is split in sequences of contiguous words that are not separated either
by a stop-word or punctuation mark; these contiguous tokens are the candidate keywords. The following step

44A very simple tokeniser can be use, such as those based on white spaces and punctuation marks.
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Table 15: Sample of the keywords extracted by RAKE for the posts presented in Figure 4.1 and
Figure 4.1.

Post from Figure 4.1 Post from Figure 4.1
Keywords Score Keywords Score

public class testframe extends jframe 18.62
private gridlayout alphabetlayout = new
gridlayout

14.75

public static void main 17.37 public static void main 14.50
jbutton button = new jbutton 11.61 private gallow gallow = new gallow 13.44
jlabel label = new jlabel 11.61 public class gallow extends jpanel 12.81
= new box 7.28 public class hangman2 extends jframe 11.48
= new testframe 6.53 hangman2 application = new hangman2 10.71
string[] args 6.0 graphics object since 10.0
import javax 6.0 public void paint 7.0
public testframe 4.62 string args[] 6.0
box 3.0 custom painting 6.0
setvisible 2.0 paint method 5.0

is to create a matrix of co-occurence of words, which consists of counting the number of times that each
word occurred in the text, and how frequent each of this word occurred with others. Then, it is necessary to
calculate the score of each word by dividing the degree of a word (i.e. number of times the word is observed,
plus number of times the word occur with another in the candidate keywords) by the frequency of the word
(number of times the word is observed). The score of each candidate keyword is the sum of scores of the words
that compose the candidate keyword. To obtain the keywords, it is necessary to sort the candidate keywords,
from the greater to the lesser score, and then only consider the first T candidate keyword. The value of T ,
according to the authors, is set as one third of the number of words in the co-occurence graph.

We present in Table 15, a sample of the keywords extracted by RAKE for the post presented in Figure 4.1
and Figure 4.1. As we cab observe in Table 15, RAKE is able to extract multi-word terms, and although it is
created for natural language, it is also possible to apply it in mixed entries with code.

Although RAKE can determine the relevance of each keyword, it is done within the scope of only one text
entry. However, we can have multiple entries returned by the code-based query and it is necessary to determine
globally, which are the most relevant keywords. Thus, in first place, we decided to normalise, between 1 and
0, the score given by ElasticSearch to each retrieved index entry. The normalisation consisted in dividing
every score by the maximum score retrieved. The normalised score of the retrieved index entry is then used
to multiply the weight of each keyword returned by RAKE. This is done to merge, the output of RAKE and
the normalised relevance score provided by ElasticSearch into a single score which considers how relevant the
text was for the query and how relevant the keyword was for the text.

Once this has been done, we join all the list of keywords into a unique list of keywords. If a keyword appears
multiple times, we merge all the occurrences while summing up the scores. To determine which are the most
relevant keywords of all the keywords extracted, we follow a similar approach used by RAKE to determine the
final keywords of a text. In other words, we sort the keywords according to their weight, and we select one
third of all the keywords found in all the retrieved index entries.

With the selected keywords and weights, we construct a new boosted query that is sent to ElasticSearch. The
results returned are a based on a query which is expected to provide more contextually relevant results from

Page 36 Version 1.0
Confidentiality: Public Distribution

30 June 2019



D3.5 Mining Documentation and Code Snippets

on-line discussions, which may or may not contain code, to the end user in relation to the code that is being
developed in Eclipse IDE.
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5 New readers for communication channels

In a typical natural language processing (NLP) workflow, a reader is the first component. Its role in CROSS-
MINER is to retrieve textual information related to an open source software project, hence, Task 3.2 which
focuses on searching and reading NLP sources.

As noted in D3.4, CROSSMINER was upgraded to support a total of 12 sources of text. Since then, it has
undergone several upgrades to include 5 additional readers; two of them have been described in Section 2.1.
The final list of textual data sources supported by CROSSMINER is presented in Table 16. The aim is to
further enrich the knowledge base and thus, widen the scope of recommendations provided to users. Detailed
description of the new readers are presented in sections 5.2, 5.1, and 5.3.

Source Status Package name
Bitbucket Existing org.eclipse.scava.platform.bugtrackingsystem.bitbucket
Bugzilla Existing org.eclipse.scava.platform.bugtrackingsystem.bugzilla
GitHub Existing org.eclipse.scava.platform.bugtrackingsystem.github
GitLab Existing org.eclipse.scava.platform.bugtrackingsystem.gitlab
JIRA Existing org.eclipse.scava.platform.bugtrackingsystem.jira
Mantis BT Existing org.eclipse.scava.platform.bugtrackingsystem.mantis
Redmine Existing org.eclipse.scava.platform.bugtrackingsystem.redmine
Sourceforge Existing org.eclipse.scava.platform.bugtrackingsystem.sourceforge
Eclipse Forums Existing org.eclipse.scava.platform.communicationchannel.eclipseforums
Zendesk Existing org.eclipse.scava.platform.communicationchannel.zendesk
NNTP Existing org.eclipse.scava.platform.communicationchannel.nntp
Sourceforge Existing org.eclipse.scava.platform.communicationchannel.sourceforge
Sympa Emails New org.eclipse.scava.platform.communicationchannel.sympa
Mbox Emails New org.eclipse.scava.platform.communicationchannel.mbox
IRC New org.eclipse.scava.platform.communicationchannel.irc
Git-based Documentation New org.eclipse.scava.platform.documentation.gitbased
Systematic Documentation New org.eclipse.scava.platform.documentation.systematic

Table 16: Crossminer Readers

5.1 Sympa

Sympa45 is an open source mailing list manager. It operates very similar to most email servers, where emails
sent by users can be stored in archives. Sympa is a Multipurpose Internet Mail Extensions (MIME) compatible
which simply means that it provides support for:

• Text in character sets other than ASCII
• Non-text attachments such as audio, video or images
• Message body with multiple parts such as replies
• Header information in non-ASCII character sets

CROSSMINER relies on a number natural language components, in order to compute quality metrics. This
means that Sympa emails needs to be converted into plain text so that its content can be analysed. Thus, we

45https://www.sympa.org/
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developed a reader, capable of reading and parsing Sympa emails stored in an archive. The reader uses javax-
mail, apache commons mail and apache commons net; and currently supports compressed ‘tarballs’ archives,
i.e., tar.gzip or tgz. The parameter set required to process a Sympa project on CROSSMINER are shown in
Table 17. The URL may contain any number of log archives stored such that each folder within the log contains
emails sent per day. This is to facilitate delta based analysis required by our use case partners.

Parameter Requirements Description
URL Mandatory The Log archive to be processed
Name Mandatory Name of the project e.g., Mbox, Sympa or Irc
Description Mandatory Description of the project
File extension Mandatory Log archive file extension e.g., .tgz
Authentication Optional Username and Password to access the log archive

Table 17: Sympa, Mbox and IRC Project Parameters

5.2 Mail Box (Mbox)

Mbox stands for mail box and refers to a file that contains a collection of multiple email messages as 7-bit
ASCII text. Messages in Mbox are stored as a single text file of concatenated e-mail messages where each
email message is stored after another, starting with the ‘From’ header. Mbox files were predominantly used by
Unix hosts but are now supported by other email clients such as Apple Mail, Mozilla Thunderbird, Microsoft
Entourage and Qualcomm Eudora.

Unlike the Internet protocols used for email exchange, the format used to store emails is not formally defined
through the request for comments (RFC) standardisation mechanism. Email storage option has been entirely
left to the developer of an email client which poses some issues when migrating between clients or in our
case, reading the content. For example, Mbox generally stores email messages as 7-bit ASCII text such that
each newly added message is preceded and terminated with a completely empty line, which makes it easy to
determine the message body. However, this was not the case with the sample Mbox archive we used to develop
and test the reader for CROSSMINER. For example, some messages were not preceded or terminated with an
empty line and some were stored as UTF-8 instead of ASCII text, causing the reader to miss them completely.
In addition, Mbox format uses a ‘From’ string to delimit email messages, and this can create ambiguities if an
email message contains the same sequence in the message body.

To mitigate these issues, we used a pre-processing step that runs through the original Mbox file to identify
and fix abnormalities. Its output is stored in a temporary file that is then forwarded to the main parser that
reads the file content. Like Sympa, Mbox is MIME compatible so the reader uses apache.james.mime4j library
for parsing content. Currently the reader supports compressed ‘tarballs’ archives, i.e., tar.gzip or tgz and the
parameter set required to process an Mbox project on CROSSMINER is shown in Table 17. The URL may
contain any number of log archives stored such that each folder within the log contains emails sent per day.
This is to facilitate delta based analysis required by our use case partners.

5.3 Internet Relay Chat (IRC)

IRC is an application layer protocol based on a server and client model, that facilitates real time communication
between people in textual form.
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IRC servers accept and relay messages to connected users, who must run an IRC client either locally or web-
based. There are many IRC networks on the internet, each with one or more servers working together to relay
messages. Each network has many channels, commonly called rooms, where users can interact with each other.
A channel usually have a specific topic, and a name that starts with a “#”, such as “#crossminer”; although
users may discuss other topics that interests them. Users can join channels they are interested in or even start
their own channel. User messages can be logged by the server such that each message is time stamped and
marked with the sender’s username.

Although new applications now exist that provide similar functionalities such as Slack, IRC is time-tested
and still popular in software communities and organisations. Therefore, CROSSMINER would benefit from
analysing IRC messages about OSS in order to determine the level of support offered to users. We developed
a delta based reader based on archived IRC message logs. Since each channel focusses on a specific topic, the
reader assumes that all user messages within each channel are related to the specified topic.

The parameter set required to process an IRC project on CROSSMINER is shown in Table 17. The URL may
contain any number of log archives stored such that each file within the log represents an IRC channel and its
user messages per day. This is to facilitate delta based analysis required by our use case partners.
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6 Metric Providers

In CROSSMINER, metric providers compute heuristics that enrich the knowledge base with useful informa-
tion, that open source software developers can use to make informed decisions. The purpose of this section is
to present all the new metrics integrated into CROSSMINER as part of Task 3.4. The remaining of this section
is organised into 3 subsections, namely: Transient metrics, Historic metrics and Indexing metrics.

6.1 Transient Metrics

As the name suggests, transient metrics are used to calculate heuristics that are associated with a particular
period in time, i.e. a day in the case of CROSSMINER. They are stored temporarily within the knowledge base
and their output is passed as parameters in the calculation of other transient and historic metrics. The transient
metrics developed as part of this deliverable, are related to two areas: commit messages and documentation
analysis.

6.1.1 Transient Metrics for Commit Messages

The transient metrics presented in this section are associated with the processing of commit messages. These
metrics process the input text and return the expected values as described in Table 18 .It should be noted, that
for the extraction of topics, we are not processing the messages for detecting code elements. Commits mes-
sages tend to be very short, and they should contain mostly natural language rather than code.

Table 18: CROSSMINER Transient Metrics related to commits messages
Metric Description
commits.message.plaintext This metric pre-processes each commit message to get a split

plain text version.
commits.message.references This metrics search for references of commits or bugs within

commit messages.
commits.message.topics This metric computes topic clusters for each commit message.
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6.1.2 Transient Metrics for Documentation

The transient metrics presented in this section are associated with the processing of documentation. These
metrics process the input text and return the expected values as described in Table 19.

Metric Description
documentation This metric process the files returned from the documentation

readers and extracts the body (in format HTML or text).
documentation.classification This metric determines which type of documentation is present.
documentation.detectingcode This metric processes the plain text from documentation and de-

tects the portions corresponding to code and natural language.
documentation.plaintext This metric process the body of each documentation entry and

extracts the plain text.
documentation.readability This metric calculates the readability of each documentation en-

try.
documentation.sentiment This metric calculates the sentiment polarity of each documenta-

tion entry.

Table 19: CROSSMINER Transient Metrics related to Documentation

6.2 Historic Metrics

As the name suggests, historic metrics keep track of various heuristics associated with a specific open source
project over its lifetime. In CROSSMINER, historic metrics are calculated based on information from transient
metrics. The historic metrics developed as part of this deliverable, are related to two areas: commit messages
and documentation analysis. These metrics are presented in Table 20.

Table 20: CROSSMINER Historic Metrics related to Commits and Documentations
Metric Area Description
commits.messages.topics Commit This metric computes the labels of topics (thematic clus-

ters) in commit messages pushed by users in the last 30
days.

documentation.readability Documentation This metric stores the evolution of the documentation read-
ability.

documentation.sentiment Documentation This metric stores the evolution of the documentation sen-
timent polarity.

Page 42 Version 1.0
Confidentiality: Public Distribution

30 June 2019



D3.5 Mining Documentation and Code Snippets

6.3 Indexing Metrics

As the name suggests, indexing metrics are used to sort data from the various sources we process in CROSS-
MINER such as bug trackers, communication channels etc. Unlike the historic and transient metrics, indexing
metric does not compute knowledge from the data sources. Rather, the main purpose is to store information
produced from these sources (via the various transient metrics) in a way that can be easily retrieved through
queries. The indexing metrics developed as part of this deliverable are presented in Table 21.

Table 21: CROSSMINER Indexing Metrics
Metric Description
indexing.commits This metric prepares and indexes documents relating to

commits.
indexing.documentation This metric prepares and indexes documents relating to

documentations.
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7 Risks & Limitations

In the following paragraphs we expose the limitations found for each of the tools developed in this deliverable.
As well, we indicate the possible risks that entail the use of the methods here presented.

Concerning the Git-based documentation reader, its main limitation is the impossibility of downloading files
that on their name contain illegal characters. This happens especially on the web version of GitHub Wikis,
which allow naming a wiki entry with illegal characters. We cannot provide a solution for this limitation, but
we expect that in the future Github will either convert the illegal characters or forbidden from the web version
of the wiki creator.

With respect to the Systematic-documentation, we can name two limitations and one risk. One of the limitation
is that the reader can only download the most recent version of the documentation. The second limitation is that
the crawler implemented in CROSSMINER respect the robots configuration, which might lead to impossibility
of downloading the files. The main risk of this reader is that if it is used too frequently, the reader can be banned
from the server that stores the documentation. We have included in this reader some heuristics to prevent the
second issue, in the sense that it will wait at least one actual day before crawling again the website containing
the documentation.

Our tool for documentation classification has limitations as well. In first place, this tool is founded on the
extraction of text from files. As we indicated in its respective section, this task is not easy to solve, as there can
be multiple types of files formats and sometimes files contain internal errors that prevent the extraction of text.
However, we expect that Apache Tika will determine and manage in the best way possible, files formats and
tools to extract text correctly. Related to this, is the fact that depending on how the text has been formatted,
e.g. double column, or the elements that contain, e.g. tables or images, the quality of the extracted text will
be reduced. The only solution to this limitation is to recommend users, if possible, to select documentation
in a format that stores data in XML or HTML formats, such as Microsoft Word, instead of streams or image
formats, such as PDF or DJVU. In second place, the documentation classification uses headings and regular
expressions to detect the possible types of documentation present in a file. If a file do not contain headings,
or they are not detectable once they have been converted into text, the classifier is not being able to work.
Furthermore, as our classifier is based in regular expressions, we might not be able do detect correctly certain
patters. To prevent this last limitation, we have created as many regular expressions as possible, and we have
made them as flexible as possible.

With regard to the License Analyser, there are three limitations. The first is that the tool is only capable of
detecting OSS software licenses only meaning propriety licenses go undetected. The second issue relates to
instances where there is some overlap between language models. This is attributed to licenses either being
superseded by new (minor) revisions or that the basis of one license is used for another. For example, the
Netscape Public License and Mozilla Public License have an overlap since the Netscape web-browser eventu-
ally became Mozilla Firefox and the only difference in the licenses are the name of the licenses. Finally, in its
current form the license analyser is only capable of detecting a single license for each text passed to the tool.
However, it should be noted that to mitigate this issue, the tool has the capability to process lists of texts in
an attempt to identity instances where works have multiple licenses. As well, in the future, we expect to have
backup language models using bigrams, to refine the detection when a trigram has not been found in the main
language model.

The identification of API changes in textual sources presents the following limitations. As it happens with the
documentation classification, the tool created for solving this current task is based on matching of patterns.
This means, that one of the limitations is that we will not be able to identify all the possible cases that revolve
around a migration issue. Although we try to prevent this, by providing different sources of text where to
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match these patterns, i.e. titles, subjects and cluster labels, these not ensure that there is going to be a match. In
some cases, the titles or subjects might never contain keywords related to a migration issue, while the cluster
label might contain other keywords that were considered as more representative to the analysed texts.

The recommender created in this deliverable will be limited by the quantity and quality of the data indexed
by CROSSMINER. This aspect is related to the CROSSMINER users, as the greatest part of information that
will be stored in CROSSMINER indexes, will come from the projects analysed by users. Therefore, if no
projects are analysed or indexed, then the quality of the recommendations given by CROSSMINER regarding
discussions and code snippets can be poor or null. However, we expect that CROSSMINER will be used for
analysing several projects thus, the issue should only be present during a short time.

One limitation of SYMPA and MBOX readers is related to the processing of dates. In theory, there are stan-
dards that should be used for both mailing list services, however, as we observed during the development of
the readers, in many cases there are inconsistencies. Normally, emails not adhering the standards would break
the parsers, however, in order to reduce this limitation, we have created a series of rules and heursitics, that try
to extract and format correctly the data present in emails from SYMPA and MBOX.
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8 Conclusion

In this deliverable we have presented the progress done to fulfil the goals related to Task 3.4, which consists
in recommending code snippets and on-line discussions relevant to code that it is being developed by a pro-
grammer. As well, we explained the work that was done to include new readers for communication channel
sources, new metrics regarding the analysis of textual sources, such as commits messages and documentation,
or the tools for searching discussions regarding API migration issues.

Specifically, we created two different readers for retrieving software documentation. One of the readers is for
documentation stored in the format of a git repository, while the other reader is focused on documentation
that is stored, generally speaking, in a website, from a blog to a webpage protected behind a username and
password. We introduced in this deliverable, as well, three different tools for processing the documentation.
In first place, we created a classifier based on heuristics that determine which are the types of documentation,
e.g. getting started or installation guide, that are present within a documentation file. In second place, we
have a tool that evaluates the readability of the documentation by computing the number of familiar words
and sentences used in the text. Finally, we created a classifier that determines whether a documentation file
contains a open source license, and if it is the case, it determines which it is.

We have also explored how to detect discussion, such as forums posts or software issues, that are related to
API migrations issues. In this case, we have created a tool that search in discussions titles, email subjects and
clustering labels, for patterns that could indicate the presence of migration issues. Furthermore, this work has
been done along with our partners from Centrum Wiskunde & Informatica (WP2), which provide us with the
changed elements from an API in order to improve the search of migration issues. This tool was developed to
alert developers that users are having issues for migrating from one version of the library to another, and at the
same time, propose to users, struggling with API migrations, discussions that could be of relevance for solving
this kind of issues faster and easier.

Concerning the recommendation of code snippets and on-line discussions, we have created a recommender
based on two types of knowledge, code and natural language. More specifically, we have created a tool that
processes, in first instance, the code that it is being developed by a user, extracts the most relevant elements
from it and queries CROSSMINER indexes the most related entries. In second instance, the tool processes the
natural language text from the returned index entries to extract the most relevant keywords and query again
CROSSMINER indexes based on natural languges features.

Finally, we present at the end of this deliverable, new readers that have been created to expand the sources of
information that can be processes by CROSSMINER. At the same time, we explain the new metrics that have
been created regarding the analysis of documentation files and commits messages.

In Table 22, we present a summary of the requirements explored in this deliverable along with their current
implementation status in CROSSMINER.
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Ref Description Priority Status

D38 Shall collaborate with the source code mining work package to analyse documents that con-
tain both natural language and code, e.g. documentation and bug reports. Shall  

D39 The knowledge base (Mining Cross-Project Relationships work package) shall provide the
infrastructure for hosting the indexes populated by natural language analysis. Shall  

U35 Able to search documentation Shall  
U42 Able to detect in the data sources text referring to one or several bugs Shall  
U43 Able to detect in the data sources text referring to one or several commits Shall  
U45 Able to extract sentiment analysis from wikis Should  
U49 Able to detect in the data sources one or several commits hashes Shall  
U50 Able to list commits with bugs Shall  
U51 Able to list bugs with commits Shall  

U59 Able to identify code snippets that use old and new third-party API in forum threads concern-
ing migration of the usage of the given third-party API Shall  

U62 Able to extract text from HTML and markdown to feed natural language analysis and identify
code snippets Shall  

U63 Able to extract text from PDF to feed natural language analysis and identify code snippets May  
U64 Provides recommendations to add documentation commonly found in successful projects Should G#
U65 Provides recommendations to improve the structure of the documentation Should G#
U66 Able to analyse Java code snippets Shall  
U67 Able to analyse JavaScript code snippets Should  
U68 Able to analyse C code snippets Shall  
U69 Able to analyse PHP code snippets Shall  
U110 Able to analyse PDF documents May  
U111 Able to identify the documentation contains a Getting Started Should  
U112 Able to identify the documentation contains a User Guide Should  
U113 Able to identify the documentation contains a Developer Guide Should  
U114 Able to identify the documentation contains a Code Snippets Should  
U115 Able to analyse the documentation has a License Shall  
U116 Able to analyse readability of documentation Shall  
U185 Communication channel parsers use MBoxes Shall  
U188 Documentation parsers use data dumps Shall  

Table 22: WP3 Use Case Requirements related to Task 3.4
[Early stage: #; Half done: G#; Fully done:  ]
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