
Project Number 957254

D5.5 Complete framework of test generation and build
schedule tooling

D5.4 Build schedule tool prototype

Version 1.0
30 June 2023

Final

Public Distribution

Delft University of Technology

Project Partners: Aicas, Delft University of Technology, GMV Skysoft, Intelligentia, Q-media, Siemens,
Siemens Healthcare, The Open Group, University of Luxembourg, University of
Sannio, Unparallel Innovation, Zurich University of Applied Sciences

Every effort has been made to ensure that all statements and information contained herein are accurate, however the
COSMOS Project Partners accept no liability for any error or omission in the same.

© 2023 Copyright in this document remains vested in the COSMOS Project Partners.



D5.5 Complete framework of test generation and build schedule tooling
D5.4 Build schedule tool prototype

Project Partner Contact Information

Aicas Delft University of Technology
James Hunt Annibale Panichella
Emmy-Noether-Strasse 9 Van Mourik Broekmanweg 6
76131 Karlsruhe 2628 XE Delft
Germany Netherlands
Tel: +49 721 663 968 0 Tel: +31 15 27 89306
E-mail: jjh@aicas.com E-mail: a.panichella@tudelft.nl
Intelligentia GMV Skysoft
Davide De Pasquale José Neves
Via Del Pomerio 7 Alameda dos Oceanos Nº 115
82100 Benevento 1990-392 Lisbon
Italy Portugal
Tel: +39 0824 1774728 Tel. +351 21 382 93 66
E-mail: davide.depasquale@intelligentia.it E-mail: jose.neves@gmv.com
Q-media Siemens
Petr Novobilsky Birthe Boehm
Pocernicka 272/96 Guenther-Scharowsky-Strasse 1
108 00 Prague 91058 Erlangen
Czech Republic Germany
Tel: +420 296 411 480 Tel: +49 9131 70
E-mail: pno@qma.cz E-mail: birthe.boehm@siemens.com
Siemens Healthineers The Open Group
David Malgiaritta Scott Hansen
Siemensstrasse 3 Rond Point Schuman 6, 5th Floor
91301 Forchheim 1040 Brussels
Germany Belgium
Tel: +49 9191 180 Tel: +32 2 675 1136
E-mail: david.malgiaritta@siemens-healthineers.com E-mail: s.hansen@opengroup.org
University of Sannio University of Luxembourg
Massimiliano Di Penta Domenico Bianculli
Palazzo ex Poste, Via Traiano 29 Avenue J. F. Kennedy
I-82100 Benevento L-1855 Luxembourg
Italy Luxembourg
Tel: +39 0824 305536 Tel: +352 46 66 44 5328
E-mail: dipenta@unisannio.it E-mail: domenico.bianculli@uni.lu
Unparallel Innovation Zurich University of Applied Sciences
Bruno Almeida Sebastiano Panichella
Rua das Lendas Algarvias, Lote 123 Gertrudstrasse 15
8500-794 Portimão 8401 Winterthur
Portugal Switzerland
Tel: +351 282 485052 Tel: +41 58 934 41 56
E-mail: bruno.almeida@unparallel.pt E-mail: panc@zhaw.ch

Page ii Version 1.0
Confidentiality: Public Distribution

30 June 2023



D5.5 Complete framework of test generation and build schedule tooling
D5.4 Build schedule tool prototype

Document Control

Version Status Date
0.1 Outline 31 May 2023
0.2 Background and WP6 overview completed 5 June 2023
0.4 First full draft 9 June 2023
0.5 Initial internal review and changes (within ZHAW) 9-12 June 2023
0.6 Review from other partners of the consortium 13-24 June 2023
0.8 Further editing draft 25-27 June 2023
0.9 Updates addressing final reviewer comments and final draft release 28 June 2023
1.0 Final QA version for EC delivery 30 June 2023

30 June 2023 Version 1.0
Confidentiality: Public Distribution

Page iii



D5.5 Complete framework of test generation and build schedule tooling
D5.4 Build schedule tool prototype

Table of Contents

1 Introduction 1

1.1 Work Package Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Task Overview (T5.2 T5.3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Purpose of This Deliverable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background and Related Work 2

2.1 Test Case Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.1 Readability and Understandability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.2 Naming and summarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.3 Realistic Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.4 Capturing and Replaying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Testing Vision Components in CPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Adversarial Example Generations for DNNs . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Regression Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Automated Program Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Simulation-based Testing for CPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5.1 Realistic Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5.2 Semi-Realistic Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.3 Abstracted Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 COSMOS Architecture and Tools 11

3.1 Architecture of COSMOS - WP5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Carving Unit-Level Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 Motivating example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.2 E2E tests instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.3 Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.4 Generating Unit Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Adversarial Example Generations for the Vision Components of CPS . . . . . . . . . . . . . . 17

3.3.1 Single and Multi-objective Differential Evolution . . . . . . . . . . . . . . . . . . . . 19

3.4 Speeding Up Program repair for Self-driving Cars With Regression Testing . . . . . . . . . . 21

3.4.1 Algorithm Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.2 Regression testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.3 Fault localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.4 Patch generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.5 Archive Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.6 Termination and Final patch validation . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Page iv Version 1.0
Confidentiality: Public Distribution

30 June 2023



D5.5 Complete framework of test generation and build schedule tooling
D5.4 Build schedule tool prototype

3.5 Prototype of the Build and Test Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5.2 Test Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5.3 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5.4 Multi-objective optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5.5 Geneti operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Evaluation: Carving Unit-Level Test Cases 29

4.1 Study Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 RQ1: Feasibility of the unit test generation based on E2E Tests . . . . . . . . . . . . . . . . . 30

4.2.1 Execution Failure Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.2 Test Failure Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 RQ2: Understandability of the carved tests vs EvoSuite tests . . . . . . . . . . . . . . . . . . 32

4.4 RQ3: Understandability of the carved tests vs manual tests . . . . . . . . . . . . . . . . . . . 34

4.5 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Evaluation: Adversarial Example Generation for the Vision Components of Cyber-Physical
Systems 36

5.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Implementation and Parameter settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.1 Parameters setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4.1 Results on VGG16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4.2 Results on other models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.5 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 COSMOS Requirements, Integration Status & Summary of Future Work 43

6.1 Status of Integration & Requirements Coverage of Tools in each Use case and & Next Steps . 43

6.1.1 Refactoring Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.1.2 Test Decomposition and Test Generation . . . . . . . . . . . . . . . . . . . . . . . . 51

6.1.3 User-oriented Maintenance and Testing . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

30 June 2023 Version 1.0
Confidentiality: Public Distribution

Page v



D5.5 Complete framework of test generation and build schedule tooling
D5.4 Build schedule tool prototype

Executive Summary

This report describes the architecture and tools developed as part of the framework for user-oriented test
generation and build- and test-scheduler, to improve CPS behavioral states. The test suites for CPSs usually are
expensive and time-consuming tasks. COSMOS targeted innovation is to extend traditional DevOps testing
pipelines with the ability to prioritize, reducing test duration, and reduce computational costs. More specifically,
COSMOS’s focus is to select test cases by combining efforts in carving higher-level test cases and high
probability failing test cases.

Key technologies for this task are (1) meta-heuristic search for test case generation, (2) Natural Language
Processing to link relationships between test cases (WordNet) , and (3) machine learning.

Given such a background, this report begins by describing the current state-of-the-art and identifying gaps in the
literature concerning the following relevant research topics:

• Background information on the current state of Test Case Generation specific for CPSs.

• Background information on the current state of testing computer vision tasks within the CPS domain;

• Summary of main general research on regression testing techniques, focused on test suite minimization
efforts;

• Background information on the current state of automated program repair in CPSs;

• Focused related studies and tools on simulation-based testing for CPSs.

The deliverable discusses the general architecture of COSMOS Component regarding the build and test scheduler
and test generation for CPSs. Then, it discusses the architecture and tools of developed tools:

• Development of Test Case Generation Tools for Rapid DevOps Iterations;

• Adversarial Example Generation for Vision Components within CPSs;

• Program Repair for Self-driving cars with regression testing;

• Tool development regarding the Build and Test Scheduler within a DevOps pipeline.

Finally, a summary of the tools presented within the COSMOS requirements and future work.
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1 Introduction

1.1 Work Package Overview

In recent years, Cyber-physical Systems (CPSs) became of interest across many industries [44] [119]. The
increased adoption of CPS increases the urgency to tackle CPS-specific challenges, as these systems became to
play critical roles in our daily lives. Besides transportation, we also encounter them as medical devices [28].
Given the severity of unexpected behaviors these systems can have, assuring the quality of software deployed in
CPS is a very critical.

Work package 5 concentrates on improving the process of software quality assurance in the development
lifecycle of CPS from three different perspectives:

1. Improving code quality to enhance the performance of CPSs (Task T5.1).

2. Reducing the time and resources required to execute tests, written to validate CPS, in DevOps iterations
(Task T5.2).

3. (Task T5.3) Enable user-oriented test generation, with the purpose of improving CPS behavioral states,
when dealing with humans (e.g., developers or general people interacting with the system).

The first deliverable (D5.1) focused on the first aspect, with the other previous deliverables (D5.2 and D5.3)
took the first steps for the second and third points. Starting with the first deliverable, we performed an empirical
study to identify CPS-specific (performance) antipatterns. This was followed by the creation of a handbook
of detection approaches (including an automatic detection tool) and proposed solutions. Then, we presented
a prototype for test decomposition, a new algorithm to test the lane-keeping assistant (REWOSA) to aid
automated test generation for self-driving cars, and the first steps regarding test case prioritization.

This document reports the deliverables D5.4 and D5.5. Within this document, we present our Build and Test
Scheduler and Test Generation tools.

1.2 Task Overview (T5.2 T5.3)

Ensuring software quality in CPSs is done by running software tests with different criteria and granularity levels.
The lower-level test cases validate each component in isolation, followed by the integration between each other.
These test cases are fast to run and cost little computation effort. The high-level tests focus on validating the
functionality of the whole system. These tests are more expensive to run and will require more time. In order to
validate recent code changes, they are required to run often (automatically) [55].

In CPS projects, most test suites contain test cases with simulation or the Hardware-in-the-loop, these high-level
tests are resource-intensive and time-consuming tasks.

To address these challenges, we aim to work on techniques that can carve the expensive high-level tests in CPSs
into low-level (unit or component integration) test cases. Furthermore, we study different techniques to schedule
tests according to a list of optimization aspects.

This task includes the following activities:

• developing automated test generation techniques, which are useful in generating low-level tests (e.g., unit
or component integration tests) from high-level tests.

• developing improved testing techniques for vision components in CPS, using a Differential Evolution
(DE) approach (with single- and multi-objective variants).

• extend regression testing methods for program repair for self-driving cars and the build- and test-scheduler.
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1.3 Purpose of This Deliverable

This report describes the framework for build- and test scheduling and test-generation tooling, with the purpose
of improving quality assurance for CPS. This report begins by describing the current state-of-the-art and
identified gaps in the literature concerning the following relevant research topics:

• Background information on the current state of Test Case Generation specific for CPSs (Section 2.1);

• Background information on the current state of testing computer vision tasks within the CPS domain
(Section 2.2);

• Summary of main general research on regression testing techniques, focused on test suite minimization
efforts (Section 2.3);

• Background information on the current state of automated program repair in CPSs (Section 2.4);

• Focused related studies and tools on simulation-based testing for CPSs (Section 2.5).

The deliverable discusses the general architecture of COSMOS Component regarding the build and test scheduler
and test generation for CPSs. Then, it discusses the architecture and tools of developed tools:

• Development of Test Case Generation Tools for Rapid DevOps Iterations (Section 3.2 and Section 4);

• Adversarial Example Generation for Vision Components within CPSs (Section 3.3 and Section 5);

• Program Repair for Self-driving cars with regression testing (Section 3.4);

• Tool development regarding the Build and Test Scheduler within a DevOps pipeline (Section 3.5).

Finally, an overview of the tools presented connected to the COSMOS requirements and a summary of future
work.

2 Background and Related Work

This section overviews the current state-of-the-art and identified gaps in the literature, providing important
background information for better contextualizing the innovations targeted by COSMOS.

2.1 Test Case Generation

In the software-enabled world that we live in, reliable and correct software is crucial [87]. As such, software
quality assurance has become a critical asset in the software engineer’s toolbox. For example, automated
testing in the form of unit tests has become an important ingredient to ensure high-quality software [15]. While
the importance of testing is generally acknowledged, writing tests is seen as a tedious and time-consuming
task [17, 11]. To relieve developers and/or testers of the burden of writing test cases, the research community
has invested in developing and evaluating automatic test generation approaches [6, 13, 58, 61].

Today, tools such as EvoSuite [58] and Randoop [122] generate a test suite starting from Java source code using
search-based algorithms or random approach to reach higher coverage [60, 127]. Several empirical studies
recently focused on practical usage, the challenges automated test generators face in real life, and the quality
of the tests generated [59, 153, 7, 128, 129]. Even though automated unit test generation has made significant
progress, generated unit tests are less readable than their human-written counterparts [69]. Almasi et al. have
conducted an extensive evaluation of automatically generated unit tests in the financial services domain; they
have observed that developers (i) find it difficult to follow the scenario depicted in the test case, (ii) find the test
data unclear, and (iii) have difficulties with the meaningfulness of generated assertions [7].
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2.1.1 Readability and Understandability

Readability and understandability are two similar terms, but they have different meanings. Readability entails
structural and semantic characteristics that allow developers to understand source code, while understandability
is defined as the ease with which developers are able to extract information from a program [120].

Researchers have also tried to formulate/design readability metrics. Buse and Weimer [24] built the readability
metric of the source code, and a predictive model was developed by Daka et al. [39] to assess the readability
of unit tests. It was then applied to EvoSuite to produce more readable tests by including readability as a
secondary objective after coverage. Fraser and Arcuri [58] used mutation analysis in order to reduce the number
of assertions, as a primary factor impacting the developers’ effort in validating and understating what the tests
assert for. However, understandability is more qualitative than evaluating with the pre-trained models or simply
counting the number of assertions. Throughout this deliverable, we used the term understandability to signify
this difference.

2.1.2 Naming and summarization

Zhang et al. proposed an Natural Language Processing (NLP)-based technique that automatically generates
descriptive names for unit tests based on the common structure and names of tests [176]. Daka et al. used
coverage criteria to generate unique names for automatically generated unit tests [40]; Nijkamp et al. adapted
this approach to fit test amplification [118]. Roy et al. developed DeepTC-Enhancer, which uses deep learning
to automatically generate method-level summaries and rename identifiers for the generated test cases [147].
Panichella et al. proposed TestDescriber, which generates test case summaries automatically [131]; starting
from EvoSuite-generated tests, TestDescriber generates a description of the intent of the unit tests. Panichella
et al. have established that developers working with the test case descriptions are quicker in resolving bugs
indicated by failing tests.

2.1.3 Realistic Inputs

Afshan et al. have combined a natural language model with a search-based test generation to improve the
readability of generated inputs [5]. Through a user study they have observed that participants are faster at
evaluating inputs generated with their language model. Knowledge bases such as DBPedia have been used
in some studies to generate realistic inputs; Alonso et al. [8] utilized this approach to generate realistic web
APIs, and Wanwarang et al. [167] have used it to test mobile applications. It is important to note that these
aforementioned works only provide linguistically realistic data. On the other hand, MICROTESTCARVER can
be used to generate actual test data in a variety of dimensions; it can generate test data when it contains complex
objects like collections, ad hoc objects created by the developer, as well as mock objects by using tracing
information.

2.1.4 Capturing and Replaying

The purpose of carving unit tests is automatically extracting a collection of unit tests replicating the calls seen
during the system test [49]. Also, it is called “record and replay" because the key idea is to record such calls,
and replay them later - collectively or selectively [175].

Record-and-replay approaches have been widely used for crash replication, e.g., in ReCrash [12], ADDA [35],
Bugnet [114], and jRapture [157]. In addition, [16] and [25] are recent record-replay techniques that are based
on monitoring non-deterministic and hard-to-resolve methods (when using symbolic execution) respectively.
The recent work on reproducing context-sensitive crashes of Android applications, MoTiF [67], also falls in the
first category of record-replay techniques. The aforementioned techniques rely on program run-time data for
automated crash replication. Thus, they record the program execution data in order to use it for identifying the
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program states and execution path that led to the program failure. However, monitoring program execution may
lead to (i) substantial performance overhead due to software/hardware instrumentation [143, 30, 115], and (ii)
privacy violations since the collected execution data may contain sensitive information [30].

2.2 Testing Vision Components in CPS

Many systems we encounter in daily life include machine learning components that make automated decisions
or inferences based on observed data patterns. Ever since so-called deep Convolutional Neural Networks
(CNN) outperformed hand-crafted methods in the 2012 ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC) [148], deep learning models have become mainstream in computer vision. Furthermore, in many
other applied machine learning domains, such as natural language processing and music information retrieval.

Recent advancements in CNN-based neural networks, such as dropout [156] and batch normalization [77],
have effectively addressed prominent challenges encountered in training neural networks, such as the curse of
dimensionality and the vanishing gradient problem. Consequently, convolutional networks have emerged as
dominant models for various computer vision tasks, including image classification [148], object detection [66,
180], and semantic image segmentation [29, 149].

Therefore, pre-trained CNN models like VGG16, VGG19, and ResNet50 have been used in the literature for
desiging vision components of self-driving cars, such as traffic light detection [62], image segmentation for
driving scenarios [149], training self-driving agents [18], and steering angle prediction [80].

Deep Learning (DL) models have been lauded for yielding high-accuracy predictions and, thus, have become
attractive candidates for integration in real-life systems that may be safety-critical (e.g. vision components
in self-driving cars). At the same time, they have been criticized for making intolerable and sometimes
incomprehensible prediction errors, jeopardizing safety. As has been shown in the machine learning world, they
are e.g. inherently vulnerable to so-called adversarial attacks, in which perceptually small changes to input data
can cause very different, erroneous model predictions [163, 68].

2.2.1 Adversarial Example Generations for DNNs

Adversarial examples have been extensively investigated in the literature, where the idea is to introduce subtle
changes in the data (e.g., changing the pixels in a target image) that do not change the ground truth but
make a DL model predict the incorrect output. Existing approaches to adversarial example generation can be
classified into white-box and black-box methods. White-box approaches [164, 103, 135, 86, 70, 178] require
access to the model under test (i.e. the model architecture, neuron weight values, and gradients). Black-box
strategies [116, 181, 161, 160, 99], instead, only require access to model inputs and outputs. These approaches
are considered more realistic as it reflects what external attackers can obtain [99], e.g., in the case of remote
API access.

Therefore, we will adopt a black-box testing approach instead, which purely focuses on modifying a system’s
input (in our case, an image) to trigger undesired changes in the system’s output (in our case, the object
classification for the input image). We will employ evolutionary strategies for this; beyond images, these have
e.g. been proposed on credit scoring models [65] and speech audio [83, 78].

In literature, various black-box attacks on image recognition Deep Neural Networks (DNNs) have been
proposed [116, 181, 99]. Nguyen et al. [116] generate random images that are noise to humans, but are
misclassified as actual objects by a DNN. In our case, we will seek more adversarial examples, where input is
kept as close to the original as possible (and thus human-recognizable).

Zhou et al. [181] propose a hybrid black-box approach that combines Evolutionary Algorithms (EAs) with the
bisection method. The images are mutated by injecting full black or white pixels. Instead, Chan and Cheng [27]
introduced a black-box approach that adds Gaussian noise to large portions of the images. Besides, their work
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targets object detection models rather than image recognition. In contrast, we investigate the adversarial example
generation in a multi-objective variant where both (i) the model misclassification, and (ii) the number of changed
pixels are taken into account.

Several works explicitly focused on minimizing perturbations, such that fewer modifications to an image would
already lead to different system output. One example of this is the work by Suzuki et al. [161], which proposes
a Discrete Cosine Transform-based method for modifying images. While such perturbations parametrically are
small, they still will affect many pixels at once. A similar consideration holds for the work by Sun et al. [160],
focusing on minimum visibility of the modification from a perceptual perspective, but not explicitly constraining
the number of pixels to modify.

On the other end of the extreme, one may search for attacks that modify as few pixels as possible (and as
such will naturally not stand out, when compared to the total amount of pixels in an image). For example,
Su et al.[159] propose a single-pixel adversarial attack using Differential Evolution (DE), executed against
the classical CIFAR-101[89] and ImageNet object classification datasets. Comparing the results on these two
datasets, a high success rate is reported for CIFAR-10, but this success rate is much lower for ImageNet, where
single-pixel attacks mainly succeed in situations where the original classification of the image was already quite
low. This may have to do with the difference in search space; the test images in CIFAR-10 are much smaller
(32× 32 = 1024 pixels) than those in ImageNet (224× 224 = 50, 176 pixels).

A stronger, yet compact attack is proposed by Lin et al. [99], who combined DE [158] and the Fast Gradient
Sign Method [112] for black-box adversarial sample generation. Executing a single-objective attack called
Black-box Momentum Iterative Fast Gradient Sign Method (BMI-FGSM), to generate
an efficient and effective perturbation that is similar to the benign input. Their approach utilizes double-step size
and candidate reuse whilst approximating the gradient direction. An initial gradient sign population is generated
using DE. The input is then gradually modified using gradient sign approximation until an adversarial example
is created that is visibly the same as the original input, but now classified as something different. Lin et al. [99]
showed that BMI-FGSM successfully generates adversarial examples for large models, outperforming other
state-of-the-art white-box and black-box approaches.

While Lin et al. [99] showed that black-box approaches based on EAs can be very competitive with their white-
box alternatives, existing approaches have various drawbacks. First, BMI-FGSM requires a large number of
iterations (in the order of thousands) and population size (hundreds of individuals). In other words, attackers
need to query the model under attack many times, increasing the chances of detection. Second, BMI-FGSM
combines multiple techniques, making its implementation less trivial and introducing more hyper-parameters to
tune. Finally, the generated attacks are not minimal, i.e., the prediction flip is achievable but requires changing
all pixels in the original image (or seed).

In this deliverable, we introduce a simpler approach purely based on DE. Furthermore, we introduce both a
single- and multi-objective variant of our approach. The former focuses on flipping the model prediction, while
the latter considers an additional objective that aims to directly minimize the number of modified pixels. As our
results will show, our approach requires a much lower number of model queries and introduces fewer image
changes compared to BMI-FGSM.

2.3 Regression Testing

Regression testing is the process of retesting a software project to evaluate whether changes in the production
code have any unintended effects on the unchanged portions [173]. The ideal approach to regression testing
involves executing the entire test suite within a DevOps pipeline [166]. However, this strategy may not be
feasible for systems that require extensive resources, such as build servers, or for test suites that are very
expensive, such as simulation-based tests. To address this issue, researchers in the software engineering
community have proposed different techniques to manage the cost of regression testing. These techniques

1https://www.tensorflow.org/datasets/catalog/cifar10
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include removing redundant tests through test suite minimization [145], selecting a subset of tests for execution
through test case selection [31], and prioritizing test cases to detect regression faults earlier through test case
prioritization [146].

Test case prioritization is particularly challenging because testers are unaware of the fault detection capability
prior to test execution. To overcome this challenge, surrogate metrics such as code coverage have been used in
the literature to determine the order of test case execution. These surrogates are correlated in some way with the
rate of fault detection [173]. Surrogate metrics can be classified into two main categories: white-box metrics
and black-box metrics [74].

Among white-box metrics, code coverage —such as branch coverage [144], statement coverage [52], block
coverage [46], and function or method coverage [53]— is the most widely used surrogate. Other prioritization
criteria have also been explored, such as interactions [22, 37], requirement coverage [155], statement and branch
diversity [182, 26], and additional spanning statement and branches [106].

In addition to white-box metrics, black-box metrics have also been investigated. For example, Bryce et
al. proposed the "t-wise" approach, which considers the maximum interactions between t-model inputs [21,
23] [136]. Other approaches considered input diversity calculated using Normalized Compression Distance
(NCD) [141], Jaccard distance [75, 76], and Levenshtein distance [73, 92] between inputs. Henard et al. also
considered the number of killed model mutants [76, 132]. A comparison between white-box and black-box
criteria for test case prioritization was conducted by Henard et al. [74], showing that there is little difference
between the two categories. In the context of Cyber-Physical systems (CPSs), Birchelr et al. [19] introduced a
novel-diversity metric for simulation-based that involve driving scenarios that are specific to the automotive
domain. Birchler et al. utilize these road features to quantify the differences between different test cases. By
considering the specific road features and utilizing the Euclidean distance, this metric offers insights into the
effectiveness of the test suite in capturing different aspects of the driving scenarios. It enables researchers and
practitioners to evaluate and optimize simulation-based test suites.

The aforementioned works optimize for a single prioritization criterion and use a greedy algorithm to sort the test
cases based on the chosen criterion. Two main greedy strategies can be applied: (i) the "total" strategy, which
selects test cases based on the number of code elements they cover, and (ii) the "additional" strategy, which
iteratively selects the test case that covers the maximum number of code elements not covered by previously
selected test cases [71] [177]. Recently, a hybrid approach proposed by Hao et al. [71] and Zhang et al. [177]
combined the "total" and "additional" coverage criteria, demonstrating that their combination can be more
effective than the individual components. Greedy algorithms have also been used to combine multiple testing
criteria, such as code coverage and cost. For example, Elbaum et al. [50] and Malishevsky et al. [104] considered
code coverage and execution cost, customizing the additional greedy algorithm to condense the two objectives
into a single function (coverage per unit cost) for maximization. Three-objective greedy algorithms have also
been employed to combine statement coverage, historical fault coverage, and execution cost [173, 123].

In addition to greedy algorithms, meta-heuristics have been used as alternative search algorithms for test case
prioritization. Li et al. [97] compared the additional greedy algorithm, hill climbing, and genetic algorithms
for code coverage-based test case prioritization. They developed fitness functions such as APBC (Average
Percentage Block Coverage), APDC (Average Percentage Decision Coverage), or APSC (Average Percentage
Statement Coverage) to enable the application of meta-heuristics.

When multiple functions (or objectives) are considered for prioritizing tests, meta-heuristics rely on the concept
of Pareto optimality [57]. One test case permutation, τA, is considered better than another permutation, τB ,
(and vice versa) if and only if τA outperforms τB in at least one objective while not being worse in all other
objectives.

Subsequent works have emphasized that permutation-based genetic algorithms for test case prioritization should
consider multiple testing criteria due to the multi-objective nature of the problem. For instance, Li et al. [96]
proposed a two-objective permutation-based genetic algorithm to optimize APSC and the execution cost required
to achieve maximum statement coverage (cumulative cost). They employed a multi-objective genetic algorithm,
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specifically NSGA-II, to find a set of Pareto optimal test case orderings that represent optimal trade-offs between
the two corresponding AUC-based criteria.

Islam et al. [79] and Marchetto et al. [105] utilized NSGA-II to discover Pareto optimal test case orderings
that represent trade-offs among three different AUC-based criteria: cumulative code coverage, cumulative
requirement coverage, and cumulative execution cost. Similarly, Epitropakis et al. [54] compared greedy
algorithms, MOEAs (NSGA-II and TAEA), and hybrid algorithms. They considered various AUC-based fault
surrogates, including statement coverage (APSC), ∆-coverage (APDC), and past fault coverage (APPFD). The
study demonstrated that three-objective MOEAs and hybrid algorithms are capable of producing more effective
solutions compared to additional greedy algorithms based on a single AUC metric.

In this deliverable, we consider regression testing methods in (1) program repair for self-driving cars, and (2)
for the build and test scheduler.

2.4 Automated Program Repair

In the past years, several automated program repair (APR) strategies have been proposed in the literature to fix
bugs in individual software programs without any human intervention [168, 85, 138, 63]. Both academia and
industry have extensively studied APR techniques. Examples of well-known APR techniques include Genetic
Programming (GP) [90] random search [138], and symbolic execution [108].

These techniques require a faulty program and a test suite comprising passing test cases representing the desired
program behavior and failing test cases that expose the fault to be addressed. The process of fault repair involves
iteratively identifying faulty statements in the code (known as fault localization [171, 81]), automatically
modifying the identified statements (patch generation), and checking if the patched code passes all the test cases
(patch validation).

Therefore, an APR system consists of three main phases. First is fault localization, where off-the-shelf
techniques are used to diagnose suspicious code elements (e.g., statements) prior to the repair process. Second
is patch generation, where repair operations are applied to suspicious locations based on a ranking list. Each
modified program version is considered a candidate patch. Lastly, in the patch validation phase, each candidate
patch is tested against the test suite until a patch that successfully passes all tests is found (known as a plausible
patch). Existing APR systems often terminate after finding one plausible patch or reaching the time budget.

The various APR techniques differ on the underline heuristics used to generate candidate patches. Search-based
program repair, exemplified by the work of Le Goues et al. [90] in GenProg, focuses on genetic search for
repairing C programs. One significant contribution was representing patches as changes (addition, removal,
or replacement) to existing statements. Genetic search involves the mutation, creation, and combination
of chromosomes, which are the fundamental units of the search. In APR, a chromosome represents a list
of such changes rather than the entire program, making the approach lightweight. This approach relies on
the Redundancy Assumption [107], which assumes that the required statements for the fix already exist and
only need minor adjustments such as using the correct variable or adding a null-check. The validity of this
assumption has been confirmed by Martinez et al. [107], who demonstrated its widespread applicability in
inspected repositories.

Other APR techniques uses constraint solving [48, 172] (e.g., SMT solvers) to generates patches for conditional
expressions, such as condition code with arithmetic and first-order logic operators. Instead, template-based
APR [88, 100, 101] involves the design of predefined patterns to guide patch generation. For example,
TBar [101] constructs a comprehensive pattern pool by integrating patterns from existing template-based APR
systems. Finally, Learning-based APR [32, 95]adopts machine/deep learning techniques to generate patches
based on existing code corpora.

In the context of CPS, Abdessalem et al. [4] present a novel automated repair technique designed to tackle
the challenges of resolving undesired feature interaction failures in automated driving systems (ADS). Unlike
previous approaches that focused on fixing bugs in individual software programs, this research addresses failures
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Figure 1: An intersection scenario in CARLA.

that arise at the system-level due to undesired interactions among different components or functions within
complex systems such as autonomous cars. The proposed repair strategy encompasses several key aspects,
including fault localization across multiple lines of code, simultaneous resolution of multiple interaction failures
caused by independent faults, scalability from the unit-level to the system-level, and prioritized resolution
based on the severity of failures. This work contributes to the advancement of automated repair techniques for
system-level failures in complex autonomous systems, ultimately enhancing their safety and reliability.

Existing research has highlighted the time-consuming nature of patch validation [102] due to two main reasons.
Firstly, the generation of a large number of patches adds to the overall time required for validation. Secondly,
each patch necessitates the execution of non-trivial time-consuming original tests for validation. In addition
to the substantial number of generated patches, the execution of each patch against the original tests incurs
significant costs. In fact, the generate-and-validate procedure in APR bears resemblance to regression testing,
wherein patches represent modifications to the original flawed program and each patch must be validated using
the existing test suite. Therefore, regression testing techniques can help reducing the cost of the patch validation
face, as it has the potential to enhance repair efficiency by selectively executing only the tests affected by the
patch.

In the context of CPS, simulation-based tests are particular expensive as they require additional resources (e.g.,
GPU servers) and longer runtime (the time to simulate a test scenario), increasing the potential benefits of
regression testing techniques for program repair.

2.5 Simulation-based Testing for CPS

Autonomous driving simulators provide a controlled virtual environment for testing autonomous driving systems.
These simulators offer a range of capabilities, including the simulation of weather conditions, traffic participants,
and sensor behavior. Simulators can be split in roughly three categories: realistic, semi-realistic and abstracted.
In this section, we will review several state-of-the-art open-source simulators that are commonly used in research
and industry.

2.5.1 Realistic Simulators

Realistic simulators, such as CARLA, use digital assets to create a realistic environment, which looks similar to
the real world, and as such can be used to test autonomous driving systems in a realistic environment.

CARLA [47], developed by the Computer Vision Center at the Autonomous University of Barcelona, is a
highly realistic simulator based on Unreal Engine. It is widely used by research groups and companies such as
NVIDIA, Intel, and Toyota. CARLA features digital assets to create a realistic environment, and can simulate
the behavior of pedestrians, vehicles, and traffic lights. It also allows for the simulation of weather conditions
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Figure 2: A bottleneck scenario in MetaDrive.

such as rain, fog, and snow, as well as the behavior of sensors used in autonomous driving systems such as
cameras, lidar, and radar. Custom scenarios can be created using the built-in map editor, enabling a wide range
of traffic scenarios to be tested. See figure 1 for an example of an intersection scenario in CARLA.

AirSim [152], developed by Microsoft AI Research, is a multi-purpose simulator for the simulation of different
types of vehicles, with a focus on aerial autonomy. It is based on Unreal Engine and Unity and utilizes digital
assets to create a realistic environment. Unlike CARLA, it does not include the ability to simulate the behavior
of other traffic participants.

BeamNG.tech [14], developed by BeamNG, is a simulation framework that supports the testing of autonomous
driving systems in the game BeamNG.drive. It is a physics-based driving simulator that allows for the simulation
of autonomous driving systems in realistic environments with other simulated traffic participants. It also supports
the simulation of sensors such as cameras, lidar, and radar.

SVL Simulator [142] is a standalone simulator developed by LG Electronics R&D Lab. Based on Unity, it
allows for the simulation of autonomous driving systems in realistic 3D environments. A pre-built environment
is provided, but custom environments can be created using assets supported by Unity. It offers the option to
simulate random traffic scenarios with various traffic participants such as cars, trucks, buses, and pedestrians, or
to define the behavior of traffic participants in a custom scenario. Weather effects such as rain, fog, and snow
can also be added to the simulation. A wide range of sensors are supported, including cameras, lidar, radar,
GPS, IMU, and odometry.

AutoDrome [110] is a simulation framework developed by volunteers that supports the testing of autonomous
driving systems in the games Euro Truck Simulator 2 (ETS2) and American Truck Simulator (ATS). These
games, which allow players to drive trucks across Europe and the United States, provide large realistic driving
environments with a range of weather conditions and traffic participants. AutoDrome, which is focused on
reinforcement-learning-based autonomous driving systems, can also make use of the games’ built-in map editor
to create custom scenarios.

DeepDrive [139] is a simulator developed by Craig Quiter, and is based on Unreal Engine. It is designed to
be hardware agnostic, enabling the training of autonomous driving systems on a variety of sensors, cars, and
environments. DeepDrive uses open-source digital assets to create realistic environments, but does not support
the simulation of other traffic participants or weather effects. It includes a Python API for the integration of
autonomous driving algorithms and is highly modular, allowing for easy integration with other software and
hardware.

2.5.2 Semi-Realistic Simulators

Semi-realistic simulators, such as TORCS, use digital assets to create a semi-realistic environment, but lacks the
realism to mimic the appearance of the real world.
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Figure 3: A highway scenario in highway-env.

MetaDrive [94], developed by the Centre for Perceptual and Interactive Intelligence, is a simulator that allows
for the creation of infinite traffic scenarios through procedural generation. These scenarios include roundabouts,
intersections, tollgates, bottlenecks, parking lots, and stretches of road with randomly generated traffic. While it
lacks realistic visual assets, simulated pedestrians, traffic lights, and signs, MetaDrive does support a range of
sensors such as cameras, lidar, and radar. Additionally, its lightweight design allows it to run scenarios faster
than more realistic simulators such as CARLA and AirSim. See Figure 2 for a bottleneck scenario in MetaDrive.

TORCS [170], The Open Racing Car Simulator, is a customizable car racing simulator developed by Eric Espié
and Christophe Guionneau, based on the OpenGL Utility Toolkit (GLUT). It allows users to create custom
tracks and cars, or utilize a selection of pre-built tracks and cars. TORCS was popular in early autonomous
driving research, with an autonomous driving championship held at conferences GECCO and SIG, as well as an
annual championship hosted by the TORCS team. However, researchers have since moved away from TORCS
due to its lack of realism compared to newer simulators such as CARLA.

Duckietown [133], created by the Duckietown Foundation, is a simulator for training and developing au-
tonomous driving systems called Duckiebots. It places the Duckiebot in a loop of roads with turns, intersections,
obstacles, pedestrians, and other Duckiebots. A variety of scenarios are available, each presenting different
challenges for the Duckiebot, such as static obstacles and dynamic obstacles such as pedestrians and other Duck-
iebots. The simulator is based on a real environment and real Duckiebots, allowing the Duckiebot to be tested in
the real world after training in the simulator.

2.5.3 Abstracted Simulators

Abstracted simulators, such as highway-env, do not use digital assets to create a realistic environment, instead,
the environment is abstracted to a two-dimensional representation and is more focused on testing the decision-
making of autonomous driving systems.

SUMO [121], The Simulation of Urban Mobility, is a traffic simulation package developed by the Institute of
Transportation Systems at the German Aerospace Center. It is primarily used for traffic forecasting in urban
environments, but is also utilized by some autonomous driving researchers for testing custom traffic scenarios.
The environment is abstracted, with no realistic digital assets, and is represented as a lane-level road network
with 2D traffic participant shapes. It includes the simulation of pedestrian, vehicle, and traffic light behavior, but
does not support the simulation of weather conditions or sensors.

Highway-env [93] is an abstracted autonomous driving simulator. The environment is represented as a lane-
level road network with 2D vehicle shapes. Its focus is on the development and testing of autonomous driving
system decision-making modules. It offers a range of traffic scenarios, including highways, roundabouts,
intersections, and parking lots, with randomly generated traffic participants whose behavior is based on realistic
driving models. Custom behavior can also be implemented. Due to its simplified nature and decision-making
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focus, highway-env does not support the simulation of weather conditions or sensors. See Figure 3 for a highway
scenario in highway-env.

In conclusion, autonomous driving simulators provide a range of capabilities and features, including the
simulation of weather conditions, traffic participants, and sensor behavior. The simulators discussed in this
chapter, CARLA, AirSim, BeamNG.tech, SVL Simulator, AutoDrome, DeepDrive, MetaDrive, TORCS,
Duckietown, SUMO, and highway-env, are, or have been, widely used in research and industry for the testing
and development of autonomous driving systems.

3 COSMOS Architecture and Tools

3.1 Architecture of COSMOS - WP5

This deliverable focuses on Task T5.2, namely the Development of Test Case Generation Tools for Rapid
DevOps Iterations. To achieve this task, we present four main contributions:

• An unit test carver that generates unit-level test cases starting from system-level tests. The generated unit
tests are cheaper and, therefore, can be executed in more time compared to the system-level counterparts.
This helps to provide faster feedback for the developers.

• Errors in CPS can also be due to errors in the vision components and the underline machine learning
models in particular. We introduce a novel tool that identifies weaknesses (undesired miss-classification)
in convolutional neural network (CNN) models that identify objects (e.g., traffic signs) in driving scenarios
for CPSs.

• To help CPS developers debug and fix defective code in CPS, we present an automated program repair
for self-driving cars. Our approach combines evolutionary algorithms with regression testing techniques
to speed up the process of generating patches.

• Throughout the COSMOS projects, we have presented various techniques to generate tests for CSP ad
different granularity levels, from uni-level to simulation-based tests. With more tests to run in CI/CD
pipelines, scheduling which test to run during the build process becomes more critical. It requires to
consider the test inter-dependencies and the resource they require for execution.

The prototype tools are described in detail in the next subsections.

3.2 Carving Unit-Level Test Cases

In this Section, we present an approach that carves information from end-to-end (E2E) tests to generate
meaningful unit tests. Resting on the assumption that E2E tests are available for the system, during carving
we extract the execution trace from a running E2E test, including the order of calls and the inputs. Using that
information, we gather scenarios that are meaningful in the domain, and (parameter) values to instantiate objects
and pass to method calls. The premise of generating unit tests from E2E tests, is that due to unit tests being
more fine-grained, the bug localization becomes easier.

3.2.1 Motivating example

Consider Listing 1 and Listing 2 which depict respectively a manually written JUnit test and an EvoSuite-
generated JUnit test. When we compare the scenarios of both of these test cases, the manually written one is
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1| @Test

2| public void shouldCallWeatherService() {

3| // Arrange

4| var expectedResponse = new WeatherResponse("raining", "a light drizzle");

5| /** Mocking Weather Service */

6| given(restTemplate.getForObject("Weather API", WeatherResponse.class))

7| .willReturn(expectedResponse);

8| // Act

9| var actualResponse = subject.fetchWeather();

10| // Assert

11| assertThat(actualResponse, is(Optional.of(expectedResponse)));

12| }

Listing 1: An example of a manually written unit test

1| @Test(timeout = 4000)

2| public void testEqualsWithNull() throws Throwable {

3| WeatherResponse weatherResponse0 = new WeatherResponse("S:q$ZHC!0J3", "&_>!@K");

4| boolean boolean0 = weatherResponse0.equals((Object) null);

5| assertFalse(boolean0);

6| assertEquals("WeatherResponse{weather=[Weather{main='S:q$ZHC!0J3',

description='&_>!@K'}]}", 1| weatherResponse0.toString());↪→

7| }

Listing 2: An example of a unit test generated by EvoSuite

seemingly easier to understand. For example, when we zoom in on line 4 of Listing 1 and line 3 of Listing 2,
we can easily grasp that in the former case we are constructing an object to represent rainy weather, while the
latter case does not correspond to an actual weather situation (S:q$ZHC!0J3). Moreover, in Listing 1 a REST
API response is mocked, which checks if the weather that is returned by the mock corresponds to an expected
weather situation. In the case of the generated test in Listing 2, the test checks whether the object is null, and
checks the result of the toString() method, albeit with constants that do not make sense in the domain.

The overview of the proposed approach is illustrated in Figure 4. The MICROTESTCARVER framework takes
an E2E test, which can either be a manual or scripted E2E test, and it generates unit tests in three phases:
instrumenting, parsing, and generating unit tests. In the first step, it instruments the E2E tests and records
information, such as calls and inputs data; in the second step, it parses this information, and finally, it uses a
template-based approach to generate unit tests based on the parsed data.

Our approach “carves scenarios” from the E2E tests to reproduce (smaller elements of) them in the form of unit
tests. Our hypothesis is that these higher-level test scenarios embedded in the E2E tests and containing concrete
values, can lead to easier-to-understand unit test scenarios.

Our approach is implemented in a Java-based prototype called MicroTestCarver. Our tool focuses on generating
tests for public methods, which is similar to how a developer would produce unit tests for their production code.

Next, we describe each phase of our approach in detail.

3.2.2 E2E tests instrumentation

We utilize BTrace [1] as the basis for our instrumentation tool. We have created a fork of BTrace and developed
some additional functionality for our carving approach. In particular, we now collect detailed information of
types, and we also collect and serialize information on fields, arguments, and callbacks in a uniform manner. In
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Figure 4: Overview of the carving framework

addition, we chose to use XStream [2] in the modified Btrace because it is an advanced and robust serialization
library for Java, and it can handle complex custom objects effectively. The modified version of BTrace is
available in the replication package [45].

A high-level overview of our tracing approach is depicted in Algorithm 1.

In this algorithm, the recorded information will be written into a trace log, and all objects observed in lines 11,
12, 21 that are not primitive and can be serialized will be serialized into a serialized object pool. An example of
a trace log is shown in Listing 3.

Basically, a trace log is a graph, in which we identify two types of methods: a NodeMethod, which is a method
that calls other methods of interest in the test generation process, and a LeafMethod, which could still call other
methods, but those methods are no longer of interest in the test generation process (and could for example be
mocked). An example of this graph is shown in Figure 5. We will now explain both concepts.

LeafMethod. A LeafMethod (LM) is a called method that does not have a callee that the trace script is watching.
An LM refers to a method that is outside the package being watched; it may be a method in a third-party library.
Each LM has a name, a type, a set of arguments, a state of the object (i.e., attribute values) before executing
the method body, and if the return type is not void, a return value. In lines 16–27 of Listing 3, an LM with the
name of RestTemplate is illustrated: its arguments are a string, class, and an array of objects. In lines 18–
27, its callback is shown, which is a container object (Optional) of type WeatherResponse; it is serialized
in a serialized object pool with the name 1e23ee0e.

NodeMethod. A NodeMethod (NM) is a method that is called within the scope of tracing, and a test will be
generated according to this method during the phase of test generation. Each NM, in addition to all the properties
of an LM, includes a set of methods called in it; these methods can be a LeafMethod or a NodeMethod.

On line 1 of Listing 3, fetchWeather is a NM with no argument and has several fields, such as city and
restTemplate. RestTemplate.getForObject(), which is an LeafMethod, is also called in this NM
and finally returns a WeatherResponse on lines 28–32.
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Algorithm 1: Tracing Algorithm
1 Function Instrumentation:

Input: AUT: app under test, pName: package name pattern, mName: method name pattern, default
value is "*"

Output: t: trace graph
Init :v ← ∅

2 while AUT is running do
3 foreach m entered in AUT do
4 if m.name ∈ mName and m.clazzName ∈ pName then
5 v ← createNM(m);
6 t.add(v);

7 Function createNM(root):
Init :nm← null

8 nm.fields← captureObjects(root.fields);
9 nm.args← captureObjects(root.args);

10 nm.callees← ∅;
11 nm.children← ∅;
12 foreach m called in root do
13 nm.callees.add(m);
14 if m.clazzName ∈ pName then
15 nm.children.add(createNM(m));

16 nm.return← captureObject(root.callback);
17 return nm;

The concept of trace log is illustrated in Figure 5, in which three NMs are highlighted that are called in the
ExampleController class. NM2 is fetchWeather() method that is explained in Listing 3, and has
restTemplate LM. The leaves in a trace log are an LM or a NM without a method call.

An important element to consider is what constitutes a LeafMethod and a NodeMethod. During the instrumenta-
tion phase, we focus on a particular packageName; we watch the classes inside the package and generate tests
for them. The classes outside of the package, but are called in methods that belong to classes inside the package,
are labeled LeafMethods.

3.2.3 Parsing

As we aim to create building blocks for the test generation phase, we parse the trace log and deserialize the
serialized objects with the aim of reconstructing the trace data into actual runtime objects. We do so by unifying
all elements that were recorded, i.e., the trace log itself and the serialized objects. We create a set of classes
that group together NodeMethods based on the classname in the fully qualified path. For example, in Fig. 5,
ExampleController will be re-initiated based on the NMs whose class name is ExampleController.
In order to create a class, its arguments, fields, and methods will be assigned based on its NMs, and its constructor
method is a NodeMethod with <init> name.

3.2.4 Generating Unit Tests

We generate test cases based on the classes created in the Parsing phase and also the analysis of the existing
source code. We used JUnit for the test framework and Mockito for mocking, and we utilized their annotations
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1 example.weather.WeatherClient.fetchWeatherNodeMethodorange:{

2 Args: []

3 Fields: [{

4 name: city,

5 type: java.lang.String,

6 object: "Hamburg,de",

...

7 }, {

9 name: restTemplate,

10 type: org.springframework.web.client.RestTemplate,

11 isPrimitive: false,

12 isInterface: true,

13 object: org.springframework.web.client.RestTemplate,

14 fields: [...],

15 }, ...]

16 virtual java.lang.Object

org.springframework.web.client.RestTemplate#getForObject

(java.lang.String, java.lang.Class, java.lang.Object[])

[org.springframework.web.client.RestTemplate@4dd4965a]

17 Args: [...]

18 Callback: {

...

19 hash: 1e23ee0e,

20 type: java.util.Optional,

21 serialized: true,

22 object: Optional[WeatherResponse{weather=

23 [Weather{main='Clear', description='clear sky'}

24 ]}],

25 fields: [class java.lang.Object value=

26 example.weather.WeatherResponse@3e1e8fc, ],

27 }

28 Return: {

...

29 type: java.util.Optional,

30 object: Optional[WeatherResponse{weather=[Weather{main='Clear', description='clear sky'}]}],

31 fields: [class java.lang.Object value=example.weather.WeatherResponse@3e1e8fc, ],

32 }

33 }

LeafMethod

Listing 3: An example of trace log
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NM1

NM2

LM1

NM3

LM2 NM5

LM3

NM4

LM4 LM5

NM1: ExampleController.weather()
NM2: ExampleController.fetchWeather()

NM6: ExampleController.hello()

Figure 5: An example of trace log with their classes

to improve legibility. In addition, we used Khorkiov’s guidelines [84], which contain a set of best practices and
recommendations for writing unit tests, in order to ensure the carved tests have a clear and readable structure.
We will first explain how we reproduce objects in a test, and then explain how different components of a test
(fields, set-up, and test method body) will be produced.

Reproducing Objects. In order to accurately reproduce objects in various parts of a test, such as setting values,
invoking methods, and making assertions, besides performing dynamic analysis, it is crucial to perform static
analysis. To accomplish this, we combined Spoon [134] and Java reflection. As a result of analyzing the source
code with Spoon, we are able to identify the appropriate constructor that can recreate the parsed object and
set its fields. We have implemented three strategies in order to reproduce the parsed objects: Unmarshalling,
ToString, and Guessing. The Unmarshalling strategy is used when the object is deserialized, and it will
reveal how to recreate the runtime object. We already have implemented unmarshallers for various types:
Primitive types, String, Collection, Map, Optional, Enum, Date, Locale, and custom objects. The custom object
unmarshaller is used as a fallback, replicating an object based on setting its fields. This strategy reproduces
WeatherResponse in lines 18 and 24 of Listing 4. The guessing strategy is used when the object is not
deserialized, and we are trying to reproduce it like the custom unmarshaller by setting its fields, with this
difference that its fields come from the trace log, not a runtime object. The toString strategy is used for the
assertion section when the object is not deserialized, but it overrides the toString() method.

Fields. The fields of a test class include the initialization of the CUT (class under test) and setting up a mocked
object. As we want to make it very clear what the CUT is, we name that field subject. The objects that are
annotated as @Mock contain methods that are called in the test methods. This is illustrated in Listing 4 where
the subject is the instantiation of WeatherClient, the class under test, and restTemplate is the object
that should be mocked since its method, getForObject, is called in fetchWeather (line 21).

Set-up. Every class has a set-up part containing a common initialization that is repeated in all methods; they
are also known as test fixtures [84]. The heuristic used for setting the default values of the fields is to select a
value that is repeated most often in the NMs of a class. By doing so, a significant amount of duplication can be
avoided. For example, in Listing 4, lines 11-12, the subject object and the city field are initiated and set; and in
Listing 5, the id with the value of 1 is repeated most, helping to reduce the number of lines.

Test Method. In order to have a simple and uniform structure, we use the Arrange-Act-Assert (AAA) pattern.
Additionally, this pattern makes test cases easier to read and understand. We will discuss the elements of a test
method in the following: method name, arrange, action, and assertion.

Test Name: When developers navigate among sets of unit tests, the names of the tests aid them in understanding
the purpose and scenario of the tests. While there are complex approaches [40, 147] to naming the methods, we
used a simple heuristic approach for creating unique test cases based on the inputs and output of a NodeMethod.
If there is only one NodeMethod for the MUT (method under test), the test name will be [MUT]Test. If there
are multiple NodeMethods, the test name will be a combination of the types and values of the inputs and output.
This name is unique since if all conditions were the same, a duplicate test would be recognized. The test name
pattern is:

([MUT ][Where[Inputs]∗][Returning[Output]]?Test)
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1 public class WeatherClientTest {

2

3 private WeatherClient subject;

4

5 @Mock

6 private RestTemplate restTemplate;

7

8 @BeforeEach

9 public void setUp() throws Exception {

10 MockitoAnnotations.openMocks(this);

11 subject = new WeatherClient();

12 subject.city = "Hamburg,de";

13 }

14

15 @Test

16 public void fetchWeatherTest(){

17 // Arrange

18 given(restTemplate.getForObject("Weather API", org.springframework.web.client.RestTemplate))

.willReturn(new WeatherResponse("Clouds", "few clouds"));

19

20 // Act

21 Optional fetchWeather = subject.fetchWeather();

22

23 // Assert

24 assertThat(fetchWeather, is(Optional.of(new WeatherResponse("Clouds", "few clouds")))));

25 }

26 }

Parameters

Set-Up

Test Method

Listing 4: An example of a carved unit test

Arrange: The arrange section involves bringing the subject and its dependencies into the desired state as well
as mocking any other methods in the MUT that need to be called.

By first determining which objects to mock, which is done in the fields section, we can mock the methods
based on the NM’s callees (LeafMethods) and their callbacks. As shown in Listing 4, line 18, the behavior of
restTemplate.getForObject is mocked, which retrieves the weather from the weather API.

Additionally, if the value of the fields in the NodeMethod is different from the one set in the set-up, it will be
reset in this section. In Listing 4 the fields are set in the set-up, and Listing 5 shows the name field as a private
method and the value in the test method differs from set-up, while the value of id is the same between set-up
and getNameTest.

Act: This section contains the method called on the CUT, input values are passed to them, and output values are
captured. The NM type will be assigned to the output type. For example, fetchWeather() has been called in
Listing 4, and getName() in Listing 5.

Assert: This section contains the verification of the result of the return value or the final state of the subject with
the expected results. We use the assertThat assertion, which compares the output of the MUT and the expected
result captured in the NM. Listings 4 and 5 contain assertion statements at lines 24 and 14, respectively.

3.3 Adversarial Example Generations for the Vision Components of CPS

Without loss of generality, an image classifier f is a mathematical function/model f : I −→ L× Rn, which
takes as input an image i ∈ I and returns a label l ∈ L and a confidence vector conf ∈ Rn, which contains the
probabilities associated with all labels l ∈ L in descending order. The first element conf1 is the probability
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...

1| @BeforeEach

2| public void setUp() throws Exception {

3| ...

4| subject.setId(1);

5| subject.setName('Basil');

6| }

7| @Test

8| public void getNameTest(){

9| // Arrange

10| subject.setName('radiology');

11| // Act

12| String getName = subject.getName();

13| // Assert

14| assertThat(getName, is("Mike"));

15| }

Listing 5: An example of setting fields of the subject and call the MUT

associated with the most likely (predicted) label l, while the remaining entries in conf2 . . . confn are related to
the other possible labels ∈ L. We can now reformulate adversarial attack generation as a search problem:

Definition 1. Let f : I −→ L × R be a trained model that takes as input an image i ∈ I and returns a
predicted label l ∈ L. Let m : I −→ I be a transformation function that mutates (i.e. applies changes to) an
image i ∈ I . The problem is finding a mutated image m(i) such that f(m(i)) ̸= f(i), with the constraints that
both i and m(i) share the same correct label (same ground truth).

Attack generation strategies can be targeted or un-targeted. The former aims to flip the prediction to a specific
label or classification outcome, while the latter aims to lead the model toward producing any incorrect outcome.
We focus on un-targeted attack generation: for demonstrating the vulnerability of a machine learning model, it
is sufficient to generate mutated images m(i) that flip the predicted output to any other label than the ground
truth label. Since a classification model returns both the label and the corresponding confidence level, we can
use the latter to guide the search toward the flipped prediction. More precisely, given a classification model
f : I −→ L× R, a seed image i, and its mutated variant m(i), we optimize the following objective:

min O1 ={
f(m(i))conf

1 − f(m(i))conf
2 if f(i)l1 = f(m(i))l1

−f(m(i))conf
1 if f(i)l1 ̸= f(m(i))l1

(1)

In other words, this objective aims to reduce the confidence for the most likely prediction/label (f(m(i))conf
1 ),

while increasing the confidence for the second-most-likely prediction (f(m(i))conf2). Therefore, the overall
goal is to reduce the difference between the top-2 labels until the model f flips the prediction to a different label
(condition f(m(i))label1 ̸= f(m(i))label1 ). In general, Equation 1 takes values in [-1,1]. A zero value indicates
that the models assign equal confidence scores to the top-2 labels. A negative value indicates that the model f
flips the prediction to a different label, whose confidence level corresponds to the absolute value of Equation 1.

We can expand this to a multi-objective problem where both “fooling” the model and reducing the number of
perturbations (at the pixel level) are equally important:

Definition 2. The problem is finding a mutated image m(i) such that f(m(i)) ̸= f(i) and that minimizes the
distance d(i,m(i)), with the constraints that both i and m(i) share the same correct label (same ground truth).
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Beyond flipping the prediction outcome by optimizing for O1, we now also need an additional objective to guide
the search towards minimizing the difference between the original image i and its mutated counterpart m(i).

To this end, our second objective counts the number of pixels that differ between the seed image i and the
mutated image m(i):

min O2 = π(m(i[a, b]) ̸= i[a, b]) (2)

= |{ea, b ∈ i : i[a, b] ̸= m (i[a, b])}| (3)

where i[a, b] and m (i[a, b]) denote the pixel values in row a and column b for the two images i and m(i),
respectively.

These two objectives are conflicting. A simple solution for O1 may consist of changing all pixels in the original
figure i such that the object is no longer recognizable for the model f . However, such a solution would not be
optimal for O2. Vice versa, a new image with zero alteration would be optimal for O2, but not flip the prediction
as sought by O1.

Given the conflicting nature of our objectives, it is not possible to find one single solution that simultaneously
optimizes them all. In other words, the problem is inherently multi-objective where the goal becomes to find the
set of optimal trade-offs between O1 and O2. In particular, we aim to find Pareto efficient trade-offs based on
the concepts of dominance and Pareto optimality.

3.3.1 Single and Multi-objective Differential Evolution

To find adversarial attacks, we rely on differential evolution (DE) only. Hence, compared to BMI-FGSM, we do
not use any algorithm to approximate the gradient. We consider two different variants of DE: Pixel-SOO, a
traditional single-objective variant (to optimize O1) and Pixel-MOO, a multi-objective variant based on the
non-dominated sorting algorithm (NSDE) [10] (to optimize O1 and O2).

Both variants iteratively evolve a pool of N randomly generated adversarial attacks, called population. In each
iteration, N offspring attacks are generated from the population using variation operators. Then, the population
for the next iteration is obtained by combining the previous population and the offspring attack, forming a pool
Q of 2 ×N attacks and selecting the N top individuals. The selection is performed using an environmental
selection and represents the main difference between Pixel-SOO and Pixel-MOO.

In Pixel-SOO, the environmental selection is applied by selecting the best N individuals among the parent
and the offspring solutions/attacks according to the main objective O1. This mechanism is elitist since the best
attacks can survive across the generations until new better solutions are found.

In Pixel-MOO, the environmental selection is performed by applying the fast non-dominated sorting algo-
rithm [43], which ranks the solutions in Q into sub-dominated fronts based on the dominance relation.

In the following, we detail (1) the encoding schema, (2) how we initialize the initial population, (3) the variation
operator.

3.3.1.1 Encoding schema. As mentioned before, an adversarial attack is produced by altering a seed
image i. Instead of representing/encoding an adversarial attack as a completely new image, we only encode the
changes to be applied, also called the mask. In particular, given the seed image i, we encode a solution/attack in
NSDE as a list of pixels to change: X = [x1, . . . , xk]. Each entry xj in X is a tuple [a, b, valuej ], where a and
b determine the position of the pixel to change (i.e., a is the row index and b is the column index), while valuej
indicates the new pixel value in RGB notation.
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3.3.1.2 Initialization. The first step to initializing NSDE involves generating an initial pool of adversarial
attacks. To this aim, we create N attacks by creating an empty mask X = [] and adding some changes using the
add operator, one of three alternative variation operators described below.

3.3.1.3 Variation operator. Given a parent attack X , we design three types of operators that add, delete,
or change entries in X . Each operator is applied with probability 1/3.

The add operator randomly inserts one entry in X with probability σ = 1; a second entry is added with
probability σ = 0.5; the third one with probability σ = 0.25; and so on until no other element is added. To
add a new element/entry x in X , this operator randomly selects one pixel from the original seed image i with
position rowj and colj and draws three random (noise) values δ(µ, λ) from a Gaussian distribution with mean
µ and standard deviation λ, that will be applied to the respective R, G and B channels. Hence, the new entry x
will be equal to [rowj , colj , valuej + δ(µ, λ)].

The delete operator simply deletes one entry/tuple from the mask X . However, this operator is applied only if
X contains at least two entries. This operator plays a critical role in our multi-objective formulation as it allows
to remove spurious pixel changes that do not contribute to changing the prediction results of the model f under
test.

The change operator changes the pixel values using the traditional differential operator. Given a parent image
to mutate X and a donor solution Y , a new solution X ′ is formed by using the following formula:

X ′[a, b] =

{
R1[a, b] + F · (R2[a, b]− Y [a, b]) if r < CR
X[a, b] otherwise

(4)

where r ∈ [0, 1] is a randomly generated number; R1 and R2 are other solutions within the population. There
are various variants of the differential operator that differ in how X1, X2, and the donor solution Y are selected.
In this report, we use the standard DE/rand/1 variant, where rand indicates that the donor Y is randomly
selected, while 1 indicates there is only one donor solution. Finally, the other solutions R1 and R2 are always
randomly selected from the population.

In Equation 4, F ∈ [0, 2] is called scaling factor and establishes how far the new solution X ′ is from the original
solution X based on the differentials values of the donor solution Y . Hence, F balances both exploration and
exploitation. Finally, CR ∈ [0, 1] is the crossover rate and determines how many pixels in X will be changed.

We apply a small tweak in our context compared to the traditional differential operator. If the pixel X[a, b]
differs from the original seed solution, Equation 4 may remove this change if R1[a, b], R2[a, b], and Y [a, b] are
identical to the original seed image. To prevent this case, we set the pixel R1[a, b] = [0, 0, 0] (in RGB notation)
if R1[a, b] is identical to the pixel of the initial image/seed. The same is done for R2[a, b] and Y [a, b]. Notice
that this tweak is applied only if X[a, b] differs from the original seed’s pixel in row a and column b.

3.3.1.4 Additional Remarks. BMI-FGSM by Lin et al. [99] and our approach share the main goal of
flipping the label prediction. However, there are critical differences that are worth highlighting. The first
difference regards the main objective or fitness function. The main (single) fitness function used by BMI-FGSM
aims to “suppress the probability of the ground-truth label” [99] until another false label is predicted. Our O1

explicitly maximizes the confidence level for the false label, even after the prediction has been flipped (second
case in Equation 1).

The most critical difference is within the variation operator. BMI-FGSM combines differential operators and the
iterative fast gradient sign method. Instead, Pixel-MOO and Pixel-SOO rely on the differential operators
but introduce two novel ways to generate offspring: (1) the add and (2) delete operators. The latter allows
deleting pixel changes that do not contribute to optimizing O1 (for Pixel-SOO) or that are not Pareto efficient
w.r.t. O1 and O2. (for Pixel-MOO). Finally, Pixel-MOO explores multi-objective optimization where the
mask size is considered as an explicit objective with the goal of generating minimal adversarial attacks. Instead,
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BMI-FGSM targets only the prediction outcome and does not constrain the number of pixels that can be altered
to reach a prediction flip.

3.4 Speeding Up Program repair for Self-driving Cars With Regression Testing

In this deliverable, we focus on self-driving cars (or automated driving system) as an instance of Cyber-Physical
Systems (CPS) to be repaired using evolutionary algorithms [3]. Specifically, our focus is on the integration
component responsible for preventing feature interaction failures. Self-driving cars typically incorporate
multiple features [3], such as automated emergency braking (AEB), adaptive cruise control (ACC), and traffic
sign recognition (TSR), where each feature individually automates an independent driving function.

Feature interaction failures refer to scenarios or driving situations in which one feature affects the behavior
of another feature, leading to violations of safety requirements, such as collision avoidance or speed limit
constraints. To mitigate these scenarios, engineers develop the decision logic of the integration component,
often in the form of rule sets, ensuring that interactions do not result in failures. This is typically achieved using
existing techniques for feature interaction resolution.

In this section, we introduce a novel approach called RESTORE (REgreSsion Testing prOgram REpair) to
automatically repair rule-based integration components. RESTORE combines evolutionary algorithms for the
patch generation phase and regression testing for the patch validation phase.

Algorithm 2 provides the pseudo-code for RESTORE. The inputs to RESTORE are:

• A faulty integration component IC = (f1, . . . , fn,Π), where f1, . . . , fn represent n features and Π
denotes the integration rule set.

• A test suite TS that verifies the safety requirements SR = {r1, . . . , rk}.

The output is a repaired integration component, i.e., (f1, . . . , fn,Π∗), that satisfies all test cases in TS, resulting
in a test-adequate patch Π∗.

RESTORE implements the (1+1) Evolutionary Algorithm (EA) with an archive, following recommendations
from prior studies [4, 3]. While traditional evolutionary tools, such as GenProg [90], employ population-based
algorithms like Genetic Programming, we utilize an evolutionary algorithm with only one candidate patch that
evolves throughout the generations.

This is because each candidate patch undergoes evaluation against the complete test suite to determine whether
the changes result in an increase or decrease in the number of failing tests. As a result, the overall cost of a single
iteration or generation is calculated as N ×

∑
tc∈TS cost(tc), where cost(tc) represents the cost associated

with the test tc, and N represents the population size. In our case, N = 1, which reduces the overall evaluation
cost to

∑
tc∈TS cost(tc).

Population-based algorithms operate under the assumption that the evaluation cost of individual patches is
relatively small, allowing test results to be collected within a few seconds and used to provide feedback (i.e.,
compute the fitness function) for the search. However, this assumption does not hold in our specific context, as
running a single simulation-based test case takes several minutes. Consequently, evaluating a pool of patches in
each iteration or generation becomes excessively time-consuming, requiring several hours to complete.

3.4.1 Algorithm Outline

RESTORE initialize the search by adding the buggy integration rule-set Π in the archive (line 2 of Algorithm 2.
The solution(s) in the archive are evolved through the loop in lines 5-10. In particular, in each iteration
RESTORE selects one patch Πp ∈ archive randomly (line 6) and creates one offspring (Πo) in line 7 (routine
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Algorithm 2: RESTORE
Input:
(f1, . . . , fn,Π): Faulty self-driving system
TS : Test suite
Result: Π∗: repaired integration rules satisfying all tc ∈ TS

1 begin
2 Archive←− Π

3 TS ←− PRIORITIZE(TS) // Regression testing
4 Ω←− RUN-EVALUATE(Π,TS )
5 while not(|Archive|==1 & Archive satisfies all tc ∈ TS ) do
6 Πp ←− SELECT-A-PARENT(Archive) // Random selection
7 Πo ←− GENERATE-PATCH(Πp,TS ,Ω)
8 S ←− SAMPLE(TS, K) // Sample K tests

9 Ω←− RUN-EVALUATE(Πo, S)
10 Archive←− UPDATE-ARCHIVE(Archive ,Πo,Ω)

11 if |Archive|==1 & Archive satisfies all tc ∈ TS ) then
12 Ω←− RUN-EVALUATE(Archive, TS) // Validate against the entire test suite

13 return Archive

GENERATE-PATCH) by (1) applying fault localization (see Section 3.4.3) and (2) mutating the rules in Πp.
The routine GENERATE-PATCH is presented in subsection 3.4.4.

Then, the offspring Πo is evaluated (line 9) by running a subset of the test suite in line 8 of Algorithm 2. The
test cases are selected based on the different regression testing strategies discussed in subsection 3.4.2. The
offspring Πo is added to the archive (line 8 of Algorithm 2) if it decreases the number of failing tests compared
to the patches currently stored in the archive. The archive and its updating routine are described in details in
subsection 3.4.5. The search stops when the termination criteria are met (see Section 3.4.6).

3.4.2 Regression testing

To minimize the cost of the patch validation phase, RESTORE utilizes regression testing techniques. Regression
testing is applied in three key steps of Algorithm 2, specifically in lines 3, 8, and 9.

Firstly, the test cases in the test suite TS are sorted using SO-SDC-Prioritizer by Birchler et al. [19], as
described in our deliverable D5.3. SO-SDC-Prioritizer employs multi-objective evolutionary algorithms to
sort simulation-based test scenarios based on their diversity in terms of read features. In the context of self-
driving cars, simulation-based tests involve varying road map characteristics. For each test case tc ∈ TS, we
extract the road features mentioned in Table 1, which were introduced in our previous work [19]. Subsequently,
the tests are sorted using NSGA-II [43] in a manner that prioritizes running more diverse and less expensive
test cases first. The diversity between two test cases, tc1 and tc2, is measured using the Euclidean distance
between their respective road feature vectors. It is important to note that we normalized the features using z-
score normalization, which is a well-known method for addressing outliers and rescaling a set of features with
different ranges and scales [64]. Z-score normalization scales the features using the formula x−µ

σ , where x is
the feature to be rescaled, µ is its arithmetic mean, and σ is the corresponding standard deviation [64].

The execution cost of each test case tc ∈ TS is estimated based on the past execution cost gathered from
previous test runs, as recommended in the literature [51, 174]. This estimation is accurate for SDC (Self-Driving
Cars) since the cost of running simulation-based tests is proportional to the length of the road and the cost of
rendering the simulation, which are fixed simulation elements. As demonstrated by Birchler et al. [19], past
execution cost provides an accurate estimation, considering that simulation time does not significantly vary
across multiple test re-runs.
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Table 1: Road Characteristics Features

ID Feature Description Type Range

F1 Direct Distance Euclidean distance between start and finish float [0-490]
F2 Road Distance Total length of the road float [56-3,318]
F3 Num. Left Turns Number of left turns on the test track int [0-18]
F4 Num. Right Turns Number of right turns on the test track int [0-17]
F5 Num. Straight Number of straight segments on the test track int [0-11]
F6 Total Angle Total angle turned in road segments on the test track int [105-6,420]
F7 Median Angle Median of angle turned in road segment on the test track float [30-330]
F8 Std Angle Standard deviation of angled turned in road segment on

the test track
int [0-150]

F9 Max Angle The maximum angle turned in road segment on the test
track

int [60-345]

F10 Min Angle The minimum angle turned in road segment on the test
track

int [15-285]

F11 Mean Angle The average angle turned in road segment turned on the
test track

float [5-47]

F12 Median Pivot Off Median of radius of road segment on the test track float [7-47]
F13 Std Pivot Off Standard deviation of radius of turned in road segment on

the test track
float [0-23]

F14 Max Pivot Off The maximum radius of road segment on the test track int [7-47]
F15 Min Pivot Off The minimum radius of road segment on the test track int [2-47]
F16 Mean Pivot Off The average radius of road segment turned on the test

track
float [7-47]

SO-SDC-Prioritizer is applied only once at the initialization phase of RESTORE (line 3 of Algorithm 2); its
overall execution cost is negligible to the overall the test execution cost for simulation-based test suites, as also
reported by Birchler et al. [19].

The prioritized test suite TS plays a critical role in the patch validation phase of RESTORE, specifically in
lines 8 and 9 of Algorithm 2. During this phase, each generated patch Πo is validated against a subset of the
prioritized/optimized test suite, denoted as S ⊂ TS. We consider three different heuristics for selecting the test
cases to run:

• Only-failing tests: With this heuristic, only the failing test cases are selected to validate the generated
patch Πo. While this solution can significantly reduce the validation cost (in case only a few tests fail), it
may not detect malformed patches that can cause other previously passing tests to fail.

• Top-K most diverse tests: With this heuristic, the first K test cases are selected from the prioritized test
suite TS. Therefore, the focus is on considering the most diverse and less expensive simulation tests.
The value of K is a user-defined parameter that can be chosen based on (1) domain expert preference and
(2) the number of failing tests. Ideally, K should be greater than the number of failing tests to provide
additional guarantees that the generated patch will not break previously passing tests.

• Random sampling: This heuristic randomly samples K test cases from TS. It serves as a baseline for
comparison and assessment of the previous two heuristics.

In line 9 of Algorithm 2, each patch is validated using S ⊂ TS. As a result, the fitness of each objective
is computed based on a subset of the test suite rather than the whole test suite as typically done in the
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literature [90, 4]. The main objective to optimize (minimize in our case) is the number of failing test cases in S,
which is determined using one of the three heuristics discussed earlier.

Given a candidate patch Πo, its fitness function is computed as follows:

fitness(Πo) =

∑
tc∈S

µfail(tc)

| S |
(5)

Here, µfail(tc) ∈ 0, 1 is the counting function that determines whether a test case tc ∈ S fails, and | S |
represents the number of selected test cases.

3.4.3 Fault localization

To determine which line in the integration rule set should be altered or mutated, RESTORE employs the Tarantula
formula [82] for fault localization. , a rank refinement is applied. The formula ranks the integration rules based
and determine the most suspicious one that may be causing the failure. With Tarantula, the suspiciousness is
calculated by checking which lines of code are run by the selected test cases in combination with the knowledge
that the test case passed or failed. The formula for this calculation [82] is as follows:

suspiciousness(e) =

failed(e)
totalfailed

passed(e)
totalpassed + failed(e)

totalfailed

(6)

suspiciousness(e) is the final number that indicates the suspiciousness level of each line of code. When
the closer the number reaches 1, to higher its suspiciousness level. Notice that totalfailed, totalfailed, and
coverage (failed(e) and passed(e)) are computed with regards to subset S of the test suite.

3.4.4 Patch generation

Patches are generated by mutating the rules in Π. To this aim, we consider four mutation operators:

• The modify operator changes the existing conditions in the rule set by either (1) replacing a conditional
operator (e.g., ≤) with another one (e.g., ≥) or (2) modifying the constants in the conditions.

• The delete operator randomly deletes one if statement (for single-clause conditions) or one clause in a
multi-clause condition.

• The shift operator changes the priorities of the rules in Π by shifting them up or down (or shifting the if
conditions). This corresponds to the shift operator introduced by Abdessalem et al. [4].

• The add operator randomly adds one rule by (1) copy-pasting an existing rule and (2) applying the modify
operator.

3.4.5 Archive Updates

The archive stores the best partial fixes discovered during the search process. In the beginning, at line 2 of
Algorithm 2, the archive is initialized with the faulty rule set Π. As new patches Πo are generated and evaluated,
they are compared against all the patches stored in the archive. The comparison is performed using the concept
of dominance in Pareto optimization, considering the failing tests as the objectives to compare on.

Page 24 Version 1.0
Confidentiality: Public Distribution

30 June 2023



D5.5 Complete framework of test generation and build schedule tooling
D5.4 Build schedule tool prototype

For each generated patch Πo, an objective vector O is assigned, where the length of O corresponds to the
number of selected test cases, i.e., | O |=| S |. Each entry in the objective vector is assigned a binary value
indicating whether the test tci ∈ S passes or fails when executed against Πo.

A generated patch is added to the archive if it either (1) dominates one of the patches already in the archive, or
(2) is non-dominated by any patches in the archive. In the former case, the dominated patches will be removed
from the archive. This archiving strategy allows the storage of partial patches that satisfy different patches
generated previously.

The archive is updated at the end of each iteration, as indicated in line 10 of Algorithm 2.

3.4.6 Termination and Final patch validation

The search process terminates under two conditions: either when the allocated search budget is exhausted or
when a test-adequate patch is discovered. A test-adequate patch refers to a patch that satisfies all test cases
tc ∈ S, indicated by the presence of a single patch Π∗ in the archive. It is important to note that although the
algorithm stores all partial patches, only one final solution (if found) is generated to satisfy all failing tests.

As the patches are validated against a subset of the entire test suite, the final patch undergoes additional validation
against the complete test suite TS”. However, the validation of the complete patch considers the test cases
prioritized by SO-SDC-Prioritizer. This prioritization is employed to increase the likelihood of detecting any
failing tests early in the process, providing prompt feedback in the case of faulty patches.

3.5 Prototype of the Build and Test Scheduler

When a team of developers commits a new code change to a version control system (such as git or svn), it
triggers the pipeline and initiates the build process. Typically, the build process consists of multiple jobs that run
in parallel. Each job consists of various tasks that are generally executed sequentially. Common tasks include
Static Code Analysis, Build, and Test. The purpose of continuous integration is to ensure thorough testing is
conducted before code submission, preventing build failures and avoiding delays in receiving prompt feedback,
which is a key aspect of continuous integration.

However, in the context of CPSs, task execution may require the use of simulators and hardware-in-the-loop
(HiL) setups, which may have limited availability and be shared among multiple projects. Consequently, the
number of jobs and tasks can be reduced, and only those that provide useful information are executed. The
challenge lies in optimally allocating simulators and hardware while prioritizing jobs and tasks.

The primary objective is to allocate tasks in a cost-effective manner and ensure sustainable pipeline usage.
For instance, the build process can be restructured to concurrently perform tests on different sub-modules of
a system. Test cases can focus on specific sections of code, allowing for parallel execution of all tests. Our
approach aims to optimize the allocation of the test tasks by taking into account (1) the different levels and types
of tests, (2) the cost associated with the resources needed to run the tests (e.g., servers with GPU), and (3) the
dependencies between the tests and the other tasks in the build schedule.

The ultimate goal encompasses three key optimization aspects: (i) minimizing the test execution time, (ii)
maximizing the effectiveness of testing, and (iii) optimizing the utilization of simulators and hardware devices.

3.5.1 Problem Formulation

In the context of this report, we focus on two main types of tasks: (1) build tasks related to compilation, and
(2) test tasks. CPSs consist of multiple modules or components that need to be built and tested in a specific
order as specified in build scripts or CI/CD configuration files. Hence, a build schedule consists of completing a
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set B = {⟨C1, T1⟩, · · · , ⟨Cn, Tn⟩}, where Ci represents the compilation task for the component at position i
within the schedule, and Ti denotes the corresponding test suite to be executed.

Our goal is to sort or prioritize the test cases within each test suite Ti in such a way that the test cases with a
higher likelihood of detecting regression faults are executed earlier. In regression testing, we typically do not
know in advance which test case or test suite will fail until the tests are actually run. Therefore, prioritization
relies on heuristics that are correlated with fault detection capabilities.

In this report, we focus on black-box heuristics, which do not require access to the source code or the
instrumentation of code to parse execution traces. This is particularly crucial in CPS, as different components
are often written in various programming languages, necessitating different instrumentation tools for the different
languages used. Within black-box heuristics, we specifically concentrate on input diversity, a well-known
heuristic that aims to prioritize the execution of the most diverse test cases first. A comprehensive overview of
diversity-based black-box heuristics is discussed in Section 2.3.

To illustrate the problem of test scheduling without loss of generality, we can formulate it as follows:

Definition 3. Let B = {⟨C1, T1⟩, · · · , ⟨Cn, Tn⟩} be the list of compilation and test tasks, where Ci represents
the compilation task for component i, and Ti = {ti,1, · · · , ti,m} is the corresponding test suite associated with
component i. The problem is to find an optimal order of test cases τ that (1) maximizes the diversity between
subsequent tests to be executed (2) minimizes the execution time (in seconds), (3) minimizes the resource usage
(such as GPU and CPU time).

3.5.2 Test Diversity

Several heuristics have been proposed in the literature to measure the diversity among test cases. These heuristics
include Jaccard distance [75, 76], Levenshtein distance [73, 92], information retrieval techniques [150], and
topic model techniques [9]. However, these techniques make an assumption that the same keywords or identifiers
will appear in multiple test cases.

In systems with different granularity levels, such as unit-level and system-level tests, the assumption that the
same keywords or identifiers will appear in multiple test cases may not hold. In fact, unit-level tests that target
the same classes may share common identifiers or keywords, while system-level tests invoke components and
call specific APIs; thus, reducing the number of overlapping keywords and identifiers. In general, system-level
tests focus on the interactions between components rather than individual methods or functions within a single
class.

To address this issue/limitation, we leverage WordNet [109], a well-established lexical database of English
words grouped in sets of synonyms, called synsets. Synsets are connect via synonym relationships, i.e., synsets
sharing the same meaning are connected in the semantic space. In addition to synonyms, WordNet also provides
information about additional relationships between synsets, such as hypernyms (superordinate terms), hyponyms
(subordinate terms), meronyms (part-whole relationships), and holonyms (whole-part relationships). These
relationships help to establish connections and hierarchy between different concepts.

In the following subsection, we describe how we use WordNet to compute the distance/diversity between test
cases and the various pre-processing steps.

3.5.3 Pre-processing

Before using WordNet, the test cases undergo a pre-process step aiming to extract words to query on the WordNet
and exclude programming language specific keywords that do not contribute to the test semantic. To this aim,
we pre-process the test by parsing them as text and applying various information retrieval transformations,
namely (i) tokenization, removing stop words, and (ii) stemming. First, tokenization aims to extract words in
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the text and remove non-relevant characters, such as punctuation marks, special characters, and numbers [125].
We split compound names (i.e., identifiers) into tokens using camel case and snake case splitting [126]. For
example, the method name get_data will be split into the two tokens get and data.

We further applied stop-word list and function to remove words that do not contribute to the semantic content of
the analyzed text [41, 130]. The former is a list of generic words (i.e., prepositions, articles, auxiliary verbs,
and adverbs) that are commonly found in any text, thus, not providing any useful information. Our stop-list
includes the standard list for the English language [130], plus a list of words that are specific to the programming
languages (i.e., reserved keywords like class in Java). The stop-word function instead removes words that
are too short [41], i.e., that contain less than three characters. Finally, we applied stemming algorithms to reduce
the words to their root form using the Porter stemming algorithm [137].

3.5.3.1 WordNet Distance .

Given two test cases ti and tj , we measure their semantic distance as the average pairwise distance for the k
most frequent keywords in the WordNet taxonomy/database:

dk(ti, tj) =
1

k

k∑
m=1

wd(wm,i, wm,j) (7)

where wm,i and wm,j are the m-th most frequent words (after processing) in the two test cases ti and tj ,
respectively; wd(.) represents the WordNet distance.

In this report, we consider different WordNet distances:

1. Path Distance (PD) similarity: It measures the distance in the WordNet taxonomy as the shortest path
that connects the synsets in the is-a (hypernym/hyponym) taxonomy.

2. Leacock Chodorow (LCH) similarity [91]: It enhances the Path-based similarity by taking into account
the depth of the taxonomy. It is computed as the negative logarithm of the shortest path (path) between
two words (synset1 and synset2), divided by twice the total depth of the taxonomy (D):

LCH(synset1, synset2) = − log

(
path(synset1, synset2)

2×D

)
(8)

3. Wu & Palmer (WUP) similarity [169]: It considers the depths of the two synsets in the WordNet
taxonomies, along with the depth of the Least Common Subsumer (LCS), also called the most specific
ancestor node:

WUP (synset1, synset2) = 2× depth (lcs(synset1, synset2))

depth(synset1) + depth(synset2)
(9)

4. Resnik similarity [140]: It measures the similarity of two synsets based on the Information Content (IC)
of the Least Common Subsumer (or most specific ancestor node):

RS(synset1, synset2) = IC(lcs(synset1, synset2)) (10)

3.5.3.2 Encoding Since the solution for test prioritization is an ordered sequence of tests to run during
the regression testing phase, we encode solutions using a permutation encoding. Our goal is to establish the
execution order of N tests; thus, our approach encodes each chromosome as an N-sized array of integers that
represent the position of a test in the desired order. For instance, let τ = ⟨t1, t2, t3⟩ be a chromosome for a test
suite containing three test cases. In this case, test case t1 will be executed first, followed by t2 and t3.
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3.5.4 Multi-objective optimization

In this report, we propose using multi-objective optimization that considers the execution cost and test case
diversity as two different objectives to optimize simultaneously. Assume that τ = ⟨t1, . . . , tn⟩ is a solution (i.e.,
test execution order) generated by the search process. The first goal to optimize is computed using the following
equation:

max f1(τ) =

n∑
i=2

wd(ti, ti−1)

i
(11)

where wd(ti, ti−1) denotes the WordNet distance between a test ti and its predecessor t(i− 1) in the ordering.
The contribution of each test case ti to the cumulative diversity is divided by its position i in the ordering τ . In
other words, this objective promotes solutions where the most diverse test cases are executed earlier.

The second objective measures how steadily the cumulative test execution runtime increases when executing the
tests with a given order τ :

min f2(τ) =
n∑

i=1

time(ti))

i
(12)

where time(ti) denotes the execution time of the test case ti in τ . The contribution of each test case ti to the
cumulative runtime is divided by its position i in the ordering τ , with the goal of promoting solutions where the
least expensive test cases are executed earlier. Notice that this objective should be minimized.

Finally, we consider a third objective that considers the cost associated with the resource needed for each test
with a given order τ :

min f3(τ) =
n∑

i=1

cost(ti))

i
(13)

where cost(ti) denotes the cost of the test case ti in τ . The cost is measured considering the average cost per
second associated with the hardware resources needed to run the test. The cost can be approximated considering
the average rent cost for using local machines or the cost of renting external cloud sources (e.g., Azure service)
with dedicated hardware (e.g., GPU).

Finding optimal solutions for problems with multiple criteria requires trade-off analysis. Given the conflicting
nature of our two objectives 2, it is not possible to obtain one single solution that optimizes both objectives
at the same time [36]. Hence, we are interested in finding the set of solutions that are optimal compromises
between the three objectives.

For multi-objective problems, the concept of optimality is based on concepts of Pareto dominance and Pareto
optimality[36]. In particular, a solution τA dominates another solution τB (τA <p τB) if and only if at the same
level of diversity and run-time, τA has a lower cost than τB . Alternatively, τA dominates τB if and only if, at the
same level of cost a time, τA has a larger diversity than τB . Finally, τA dominates τB if and only if, at the same
level of cost a diversity, τA has a lower runtime execution than τB .

Among all possible solutions, we are interested in finding those that are not dominated by any other possi-
ble solution (Pareto optimality). Pareto optimal solutions form the so-called Pareto optimal set while the
corresponding objective values form the Pareto front.

3.5.4.1 NSGA-II To find Pareto optimal solutions, we uses NSGA-II [43]. This genetic algorithm provides
well-distributed Pareto fronts and performs best when dealing with two or three search objectives [43]. NSGA-
II shares the main loop of the genetic algorithm. Thus, it shares the same encoding schema as well as mutation
and crossover operators. However, it differs on how parents are selected for reproduction and how the new

2Diverse tests are not necessarily the least expensive to run
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population is formed for the next generation. Parents are selected using the binary tournament selection, which
compares pairs of solutions in tournaments and selects the “fittest” solution from each pair for reproduction.
Finally, the population for the next generation is obtained by selecting the “fittest“ solutions among parent and
offspring solutions (elitism).

In NGSA-II, the “fitness“ of the solutions is determined using the fast non-dominated sorting algorithm and the
concept of crowding distance [42]. The former ranks the solutions according to their dominance relations. All
non-dominated solutions within a given population are inserted in the first front F1 (rank r = 1); the subsequent
front F2 (rank r = 2) contains all solutions that are dominated only by the solutions in F1; and so on. Hence,
solutions in the fronts with lower rank are “fitter” according to the Pareto optimality.

Instead, the crowding distance aims at promoting more diverse (isolated) solutions within each dominance rank.
The crowding distance for a given solution is computed as the sum of the distances between such an individual
and all the other individuals with the same rank. This heuristics is put in place to avoid selecting individuals that
are too similar to each other.

3.5.5 Geneti operators

NSGA-II evolves test case orderings by applying crossover and mutation operators. Given the nature of our
permutation problem, we use the Partially-Mapped Crossover and various permutation mutation operators.

3.5.5.1 Partially-Mapped Crossover (PMX) In the crossover, an offspring o is formed from two
selected parents p1 and p2 , with the size of N, as follows: (i) select a random position c in p1 as the cut point;
(ii) the first c elements of p1 are selected as the first c elements of o; (iii) extract the N − c elements in p2 that
are not in o yet and put them as the last N − c elements of o.

3.5.5.2 Mutation operators A chromosome p can be mutated one or more times according to the given
mutation probability. In each round of mutation, one of the three following mutation operators[151] is selected
randomly with an equal chance of 0.33% to perform the mutation:

• SWAP mutation: This mutation operator randomly selects two positions in a chromosome p and swaps
the index of two genes (test case indexes in the order) to generate a new offspring.

• INVERT mutation: This mutation operator randomly selects a segment (with a random size) of the
given chromosome p. Then, it reverses the selected segment end to end and reattaches it to generate a
new offspring.

• INSERT mutation: This mutation randomly selects a gene in the chromosome p and moves it to another
index in the solution to generate a new offspring.

We consider the three operators above since prior studies [151] showed that using multiple mutation operators
for permutation-based optimization problems increases the likelihood of escaping from solutions that are
locally optimal under one mutation operator. This procedure used for the mutation is the same in both of the
SDC-Prioritizer variants introduced in this report.

4 Evaluation: Carving Unit-Level Test Cases

4.1 Study Setup

In this section, we evaluate our prototype, presented in Section 3.2. Our investigation is steered by the following
research questions:
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RQ1 Can MICROTESTCARVER generate unit tests based on information carved from E2E tests? (Feasibility)

RQ2 How do the tests generated by our approach compare to EvoSuite-generated tests in terms of understand-
ability?

RQ3 How do the tests generated by our approach compare to manually written tests in terms of understand-
ability?

We have carried out the evaluation on three popular open-source Java web applications. We have used the
following criteria for our selection of projects:

• The project is an open-source Java web application.

• The project is popular, active, and mature as measured in terms of forks, stars, and commits.

• The project has a test suite with tests for different layers of the test pyramid, especially unit tests.

Using these criteria, we found nearly two hundred projects on GitHub. Next, we manually search among these
projects to select three projects from different domains with varying sizes. The selected projects are: Spring-
Testing, PetClinic, and Alfio; detailed characteristics are listed in Table 2. We manually conducted end-to-end
tests for these projects, which covered their core functionalities. Spring-Testing and PetClinic are tested in
Java 11, while Alfio is tested in Java 17. Manually written unit tests are available for all of these applications,
which makes it possible to compare them with carved tests for RQ3.

The first research question investigates the feasibility and analyzes the MICROTESTCARVER approach. For the
second and third research questions, we carry out an exploratory case study in which we qualitatively investigate
the MICROTESTCARVER tests and compare them to tests that are automatically generated by EvoSuite, and to
tests that were manually written and part of the open source projects already. Our focus in this investigation is
on the understandability of the generated test cases, and not so much on their effectiveness (e.g., in reaching
high code coverage). In the following, we discuss the results of our research questions.

4.2 RQ1: Feasibility of the unit test generation based on E2E Tests

Table 3 presents the experimental results of the carved unit tests regarding execution rates. In total, 41 tests are
carved for 21 CUTs of the three study subjects; 5 tests for Spring-Testing, 20 for PetClinic, and 16 for Alfio. Of
the 41 carved tests, 35 are executable (85%), 37 have an executable body, and 36 have executable test fixtures.

Taking a look at Table 3, rows 1–5 show execution results for Spring-Testing, with four out of five tests being
executable and all executable tests that pass. Rows 6–25 show the execution results for PetClinic: 19 out of the
20 tests are executable, and one test fails. Rows 26–39 show the execution results for Alfio, in which 12 out of
16 tests are executable.

Next, we investigate the reasons for generating non-executing tests, and for generating failing tests.

Table 2: Projects used in the evaluation

Application Version #Tests #Stars #Forks #Commits Scale

Alfio 2.0.5 189 1.5K 2.5K 3.6K Large
Petclinic 2.7.3 23 5k 15K 829 Mid
Spring-Testing 0.0.1 13 0.8K 0.4K 130 Small
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1| @OneToMany

2| private Set<Visit> visits = new LinkedHashSet<>();

3| public Collection<Visit> getVisits() {

4| return this.visits;

5| }

Listing 6: Type conversion failure example

4.2.1 Execution Failure Analysis

We have identified five causes for the failure of six tests. We annotated them R1 to R5 and analyze them.

R1: Passing a class as an argument. in the method calls of fetchWeatherTest (row 5) and emptyTest (row
32) a class is passed statically as an argument to invoke a method (e.g., for mocking, or initializing a CUT).
BTrace only has access to the runtime objects during carving and cannot determine which object is being passed
statically.

R2: Type conversion error. getVisitsTest (row 11) fails to execute because of failing type conversion.
More specifically, in this case, hibernate acts as a proxy and changes the object type at runtime. As shown in
Listing 6, a return type defined for the MUT (getVisits) is a collection that returns a LinkedHashSet.
However, at runtime, hibernate wraps the object in PersistentSet because of the @OneToMany annotation.
This leads to a type inconsistency at runtime.

R3: Unable to access fields during trace. Java 17+ only accesses an object’s information under certain
conditions; otherwise it requires adding JVM arguments. In our case study with Alfio, we did not add these JVM
arguments, which leads to the higher execution failure rate compared to the two other case studies. Examples
are getProviderTest (row 27) and getPathLevelTest (row 33).

R4: Unable to reproduce an object. In emptyTest (row 32), MICROTESTCARVER failed to reproduce
AlfioMetadata object with the strategies for unmarshalling. Here, XStream failed to serialize this object,
which does not implement toString(), and it was not possible to generate that with the guessing approach.

R5: Private method. If the method is private, it is not possible to instantiate from this class, and technically, it is
out of the project scope to generate tests for private methods. getPathLevelTest (row 34) is a private
method, and this method cannot be invoked in the class.

4.2.2 Test Failure Analysis

We use the Hamcrest matcher (assertThat and is) for assertions, which internally invokes the equals
method to compare two objects. In order for the test to pass, the equals method needs to be overridden for the
CUT, otherwise, it relies on the memory address comparison implementation of equals in the Object class.
getVisitsTest (row 10) failed because equals was not implemented for PetType class, but it passed
after implementation.

Examining the coverage of the study subjects gives us useful information even though MICROTESTCARVER

is not designed to optimize test coverage (it is not search-based). Figure 6 compares instruction coverage for
each application using MICROTESTCARVER , existing manually written tests, EvoSuite-generated tests, and
their combinations for each application. As Alfio is quite a large project, we exclude certain classes, such as
configuration classes, to measure coverage with a better representation of the core functionality.

Summary RQ1. Our results indicate that 85% of the unit tests that MICROTESTCARVER generate
from carved information from E2E tests are executable. We have also collected a number of reasons why
generated tests might fail to execute.
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Table 3: Experimental results of the generated unit tests on the study subjects using MICROTESTCARVER

# Test Method Name CUT Executable Executable Pass/Fail Executable
Fixture Body Status

1 helloWorldTest ExampleController True True Pass Executable
2 helloTest ExampleController True True Pass Executable
3 helloWherePersonTest ExampleController True True Pass Executable
4 weatherTest ExampleController True True Pass Executable
5 fetchWeatherTest WeatherClient False/R1 False/R1 - Refinement-Needed

Spring-Testing Total: 5 Tests 2 CUTs 4/5 (80%) 4/5 (80%) 4/4 (100%) 4/5 (80%)
6 toStringTest NamedEntity True True Pass Executable
7 getNameTest NamedEntity True True Pass Executable
8 getFirstNameTest Person True True Pass Executable
9 getLastNameTest Person True True Pass Executable

10 getTypeTest Pet True True Fail Executable
11 getVisitsTest Pet True False/R2 - Refinement-Needed
12 getBirthDateTest Pet True True Pass Executable
13 printTest PetTypeFormatter True True Pass Executable
14 printWhereCatTest PetTypeFormatter True True Pass Executable
15 parseWhereBirdTest PetTypeFormatter True True Pass Executable
16 parseWhereCatTest PetTypeFormatter True True Pass Executable
17 parseWhereDogTest PetTypeFormatter True True Pass Executable
18 parseWhereSnakeTest PetTypeFormatter True True Pass Executable
19 parseWhereHamsterTest PetTypeFormatter True True Pass Executable
20 getDateTest Visit True True Pass Executable
21 getNameTest PetType True True Pass Executable
22 toStringTest PetType True True Pass Executable
23 getNameTest Specialty True True Pass Executable
24 toStringTest Specialty True True Pass Executable
25 getVetListTest Vets True True Pass Executable

PetClinic Total: 20 Tests 8 CUTs 20/20 (100%) 19/20 (95%) 18/19 (94%) 19/20 (95%)
26 getRoleTest Authority True True Pass Executable
27 getValueTest ConfigurationKeyValuePathLevel True True Pass Executable
28 getConfigurationKeyTest ConfigurationKeyValuePathLevel True True Pass Executable
29 getProviderTest ProviderAndKeys False/R3 True - Refinement-Needed
30 getDescriptionTest EventDescriptionTest True True Pass Executable
31 getLocaleTest EventDescriptionTest True True Pass Executable
32 getLocaleTest Language True True Pass Executable
33 getDisplayLanguageTest Language True True Pass Executable
34 emptyTest AlfioMetadata False/R3 False/R4 - Refinement-Needed
35 getEmailAddressTest ConfirmationEmailConfiguration False/R3 True - Refinement-Needed
36 getPathLevelTest SystemLevel False/R5 True - Refinement-Needed
37 getDescriptionTest LocaleDescription True True Pass Executable
38 getLocaleTest LocaleDescription True True Pass Executable
39 getEmailTest OrganizationContact True True Pass Executable
40 getNameTest OrganizationContact True True Pass Executable
41 getStatusTest TicketReservationStatus... True True Pass Executable

Alfio Total: 16 Tests 11 CUTs 12/16 (75%) 15/16 (93.7%) 12/12 (100%) 12/16 (75%)
Total: 41 Tests 21 CUTs 36/41 (87.8%) 38/41 (92.6%) 34/35 (97%) 35/41 (85.3%)

4.3 RQ2: Understandability of the carved tests vs EvoSuite tests

In order to answer RQ2, we applied EvoSuite to the three case study subjects to compare these EvoSuite-
generated tests with the carved tests, amongst others in terms of understandability. We have first established
that EvoSuite fails to generate some of the carved tests, likely because it does not have access to dynamic
analysis information. When we further investigate the tests generated by EvoSuite, we observe that EvoSuite
typically generates test data with either random data, empty strings or fields, null, or mock objects. For example,
for String and Integer types, EvoSuite generates random values, and for a type like Date, it mocks a current
date/time. More specifically, in Table 4 we compare EvoSuite-generated tests with carved tests that test the
same methods. For Spring-Testing, we observe that EvoSuite does not generate any tests for the classes under
test that MICROTESTCARVER generates test for (ExampleController and WeatherController); we
think this is due to the difficulty to mock complex objects, and we do observe EvoSuite-generated tests for
CUTs Person and Weather.
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Figure 6: Instruction coverage for each study subject

A | new WeatherResponse("Jy(+XI9N", "Jy(+XI9N")

-----------------------------------------------

B | new WeatherResponse("Clouds", "few clouds")

Listing 7: WeatherResponse object generated by EvoSuite (A) in comparison to MICROTESTCARVER (B)

Table 4: Results from EvoSuite tests corresponded to those from Carved tests

Application #Carved #Generated Test Data
Tests By EvoSuite Random Null Empty

Spring-Testing 4 0 - - -
Petclinic 19 10 4 3 2
Alfio 12 2 2 0 0

Subsequently, for the projects where tests could be generated, we note the different construction methods for
test data, in particular, how many times random, null, or empty values are used by EvoSuite. Creating objects
with random fields is not meaningful for a class like WeatherResponse. Listing 7 illustrates an example of
an object EvoSuite and MICROTESTCARVER generate for the WeatherResponse class.

In PetClinic, EvoSuite could generate 10 out of 19 carved tests. For producing test data, EvoSuite generated
four tests with random data, three used null assertion (null), and two were created without setting their fields
(empty).

In order to illustrate the difference between the carved tests and EvoSuite tests, we randomly selected one
test that we show in Listing 8: the first test is generated by EvoSuite, and the second one is generated by
MICROTESTCARVER . EvoSuite used an assertNull on a petType that was not set. MICROTESTCARVER

on the other hand created a “cat” as a petType and asserts on that.

In order to apply EvoSuite on Alfio, we had to downgrade the version of Alfio from 2.0-5 to 2.0-M4-2204,
because EvoSuite does not support Java 17. We executed EvoSuite four times to aggregate the generated tests.
EvoSuite had difficulties with mocking tests, and we think that is why their coverage in this particular project is
low (11%). We discovered two similar tests among the carved tests and EvoSuite-generated tests, and in both
cases, EvoSuite utilized random data. As an example, in the test case that tests the functionality of language, the
carved test used “English” as test data; in contrast, EvoSuite used “alfio.controller.api.v2.model.Language”,
which is a string without meaning in the context.
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@Test

public void testCreatesPetType() throws Throwable {

PetType petType0 = new PetType();

assertNull(petType0.getName());

}

------------------------------------------------------

public void setUp() throws Exception {

subject = new PetType();

subject.setName("cat");

subject.setId(1);

}

@Test

public void getTypeTest() throws Exception {

PetType getType = subject.getType();

PetType petType = new PetType();

petType.setId(1);

petType.setName("cat");

assertThat(getType, is(petType));

}

Listing 8: First test is a test generated by EvoSuite, and the second one is generated by MICROTESTCARVER .

Table 5: Results from manual tests corresponded to those from Carved tests

Application #Carved #Manual Understandability
Tests Test Better Similar Poorer

Spring-Testing 4 4 0 4 0
Petclinic 19 8 0 4 4
Alfio 12 2 1 1 0

When comparing the EvoSuite-generated tests with the MICROTESTCARVER tests, we found that test data plays
an essential role in understanding a test case. In particular, with random, null, empty, or mocked inputs it is
harder to understand the logic and purpose of a test. Furthermore, search-based test generators like EvoSuite
fail to mock some methods because they do not have runtime information access. Nevertheless, search-based
approaches are capable of generating tests for corner cases and are good at increasing coverage. Also, the tests
that they generate are shorter, because they use minimization of the test case as a secondary search-objective.

Summary RQ2. When we compare carved tests with EvoSuite-generated tests, we observe that the use
of actual test data which is derived from E2E in carved tests makes the test easier to understand and
more meaningful. Search-based approaches are good at generating short test cases; the entire test suite
typically has high coverage.

4.4 RQ3: Understandability of the carved tests vs manual tests

We re-used the methodology that we used for RQ2 to compare the carved tests with existing manually written
tests in terms of understandability. We collected the manual tests that match the carved tests, i.e., they test the
same method. We then compare them in terms of test data, naming variables and tests, and line numbers; the
results are illustrated in Table 5.
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@Test

void shouldParse() throws ParseException {

given(this.pets.findPetTypes()).willReturn(makePetTypes());

PetType petType = petTypeFormatter.parse("Bird", Locale.ENGLISH);

assertThat(petType.getName()).isEqualTo("Bird");

}

private List<PetType> makePetTypes() {

List<PetType> petTypes = new ArrayList<>();

petTypes.add(new PetType() {

{ setName("Dog"); }

});

petTypes.add(new PetType() {

{ setName("Bird"); }

});

return petTypes;

}

public void parseWhereBirdTest() throws Exception {

PetType PetType = new PetType();

PetType.setId(5);

PetType.setName("bird");

ArrayList<PetType> petTypes = new ArrayList<>();

petTypes.add(PetType);

given(owners.findPetTypes()).willReturn(petTypes);

PetType parse = subject.parse("bird", Locale.ENGLISH);

PetType PetType_1 = new PetType();

PetType_1.setId(5);

PetType_1.setName("bird");

assertThat(parse, is(PetType));

}

Listing 9: Comparison of a manual test (A) with a carved test (B)

In Spring-Testing, the understandability of the manual and the carved tests are equal. Both use meaningful test
data and assertions. However, the manual tests covered a broader range of scenarios, such as when an error was
encountered in a method. In PetClinic, three tests are understandable for both carved ones and manual tests. In
four tests, manual tests are more understandable because of using private factory methods and better naming
for variables and methods. An example of this comparison in which the manual test is more understandable
than the carved one is shown in Listing 9. Although both tests use meaningful test data, and the logic of the
test is understandable, the manually written test is more structured and has less duplication in comparison to
the carved one; the manual test for mocking petType list uses the makePetTypes() factory method [113],
making it more readable since it does not need to examine the factory method internally and is also reusable
when repeated.

Overall, in Alfio we got a mixed image of the understandability of tests. More specifically, we have found two
pairs of matching tests. When comparing these pairs, we observe that the manually written tests are overly long
and try to test too much (so-called eager tests [128]). When looking beyond these two tests, we have observed
that parameterized tests are used in several manually written tests, which makes them shorter and easier to
understand.
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Summary RQ3. Comparisons between carved and manually written tests indicate that using data derived
from E2E tests will bring the carved test closer to the manually written test in terms of understandability.
However, we observe that some manually written tests use some best practices, e.g., parameterized tests or
a factory method, which enhances the readability of manually written tests in some situations.

4.5 Threats to validity

Threats to construct validity concern how we make our observations. As we have performed a largely exploratory
analysis using a manual and subjective evaluation, we acknowledge this threat to validity. In future work, we
will apply a more structured evaluation in the context of a user study to determine the understandability of tests.

Threats to external validity are related to whether we can generalize our findings. While we examined test
cases from three different subject systems that vary in size and domain, the fact that we only examined 41 test
cases in our exploratory study means that we cannot claim generalizability. In future work, we will extend our
investigation to more subject systems and more test cases.

5 Evaluation: Adversarial Example Generation for the Vision
Components of Cyber-Physical Systems

We introduce two variants of DE: (1) a single-objective variant (Pixel-SOO) that steers for pixel-based input
changes to cause an output prediction to change gradually; (2) a multi-objective variant (Pixel-MOO) that
additionally seeks to minimize the number of pixel modifications made to the original input image. Then, we
conduct a preliminary study focused on answering the following research questions:

RQ1 : How do Pixel-SOO and Pixel-MOO perform compared to the state-of-the-art BMI-FGSM in
generating adversarial attacks?

RQ2 : What are the strengths and weaknesses of Pixel-SOO and Pixel-MOO?

To answer our RQs, we run our approach with 5 different, well-known deep computer vision models from the
Keras python library. We chose VGG16 and VGG19 which are both classified as “very deep” convolutional
neural networks for large-scale image recognition3 [154], that got a canonical status due to their strong
performance in the ImageNet benchmark challenges4. VGG16 was one of the best-performing models in the
2014 ILSVRC challenge and achieves 92.7% top-5 test accuracy on the ImageNet dataset. VGG16 and VGG19
both consist of 3x3 convolutional layers stacked on top of each other in increasing depth, with VGG16 having
16 convolutional layers, and VGG19 being ‘deeper’ with 19 convolutional layers. Furthermore, ResNet50,
ResNet101 and ResNet152 all are based on deep residual learning for image recognition5 [72].

In our experiments, we use the ImageNet pre-trained weights released by the original authors after training on
the ILSVRC2012 training set, as released through Keras [33]. Note that despite these details, we consider all
models as a black-box, given the fact that our approach (and the baseline) does not need access to the model
internals.

3https://keras.io/api/applications/vgg/
4https://image-net.org/challenges/LSVRC/index.php
5https://keras.io/api/applications/resnet
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5.1 Dataset

For our experiments, we sample 50 images from the ImageNet ILSVRC2012 Validation data set [148]. We
chose the validation set, due to a lack of ground-truth data availability for the test set. First, we draw an initial
pool of images for the input by selecting 1000 random images from the ImageNet validation data folder. After
pre-processing the images to have a 224× 224 input size, we then choose whether to drop or retain the image
based on the prediction confidence by the VGG19 model and class uniqueness. As for the prediction confidence,
if the correct ground truth label is predicted with confidence between 0.8 and 0.9, we consider the image to
be a valid image for our experiments: as the ground truth label is recognized with high confidence, we can be
confident it is visually distinguishable and not ambiguous w.r.t. other classes; at the same time, for too high
confidence, it may be too obviously one particular image class, and flipping may as a consequence be hard. By
retaining only one image per object class, we also ensure a reasonably diverse set of images.

5.2 Implementation and Parameter settings

We have implemented the different DE-based approaches in Pymoo v0.5.0 [20], using Python 3.10 and Keras
2.2.2. Pymoo [20] is an open-source framework that allows us to easily adapt the simple DE and the NSDE
for generating adversarial attacks. Runs are evaluated inside a Docker container on an AMD EPYC 7713 64-
Core Processor running at 2.6 Ghz and with 256 available CPUs. We had 3 Nvidia A40 GPUs each with 48 GB
GDDR6 running CUDA version 11.6 available to us. The Dockerfile in our implementation can be rebuilt on any
system, easily modifying the CUDA container for a different system. Our implementation is available on Zenodo:

https://doi.org/10.5281/zenodo.7741267

Due to issues with running the code from BMI-FGSM, we were not able to execute it using CUDA[117] (GPU).
This meant we could only run the baseline on CPU, which has likely resulted in a slower execution time
compared to our multi-objective results which were executed on GPU.

5.2.1 Parameters setting

We set both the multi-, single-objective DE, and BMI-FGSM to evolve a population size of 20 over a maximum
of 400 generations. When a test image has been wrongly predicted, we kill the test and allow it to run for five
more generations, so better fronts may still be found. For the parameter settings, we have chosen the same
values as suggested in the literature [111, 43].

We use the variation operators with a crossover rate CR = 0.9 and scaling factor F = 0.8, which are the
recommended values in the literature [111]. For both algorithms, solutions/attacks are selected for reproduction
using the binary-tournament selection [43]. For Pixel-SOO, the binary selection is based on the single-
objective value to optimize (i.e., O1). Instead, in Pixel-MOO, the selection relies on dominance to decide
which solution wins each tournament round. Finally, we opted for a relatively small population size p = 20
(smaller than p=100 used in other studies [99, 111]) as suggested in the literature from problems with expensive
objective computation [34].

5.3 Study Design

To answer our first research question, we compare our multi-objective approach Pixel-MOO to our single-
objective approach Pixel-SOO (only optimizing for O1); next to this, we compare our single-objective
approach to the BMI-FGSM method by Lin et al.[99]. In this, we try to stay as close to the implementation by
the authors as possible; as a consequence, beyond the parameters setting population size and generations, we do
not modify the authors’ codebase6. The BMI-FGSM codebase only supports VGG16, ResNet50 and ResNet101;

6https://github.com/jylink/BMI-FGSM
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Figure 7: Success rate of BMI-FGSM, Pixel-SOO and Pixel-MOO in flipping the predictions for VGG16.

here, we started our experiments with VGG16. We execute BMI-FGSM, Pixel-SOO, and Pixel-MOO
against each image in our dataset to generate adversarial examples. For each image, we run each algorithm 10
times, to account for their random nature. As a consequence, with 50 images, the end result is a total of 1500
test runs (500 for each method). For each of the Pixel-SOO and Pixel-MOO executions, a new random
seed was generated and stored for future replications, together with the results of the generated attacks. For
BMI-FGSM a slight modification was made to the codebase to output the current prediction data. This data is
stored for each run, along with the adversarial image.

For evaluation, we consider two performance metrics: (1) the success rate, indicating the percentage out of the
10 runs for which Pixel-SOO and Pixel-MOO were capable of causing a change in prediction output, and
(2) how many pixels needed modification (i.e., how many tuples are in mask X) in the best solution. For the
comparison, we considered the best solution/attack in the final population (last generation) of Pixel-SOO.
Instead, Pixel-MOO provides a set of non-dominated solutions (front) rather than one single solution. For our
analysis, among all solutions/attacks that lead to flipping the prediction (i.e., those with negative values for the
first objective O1), we have chosen the one with the lowest number of changed pixels (second objective O2).

To compare BMI-FGSM and Pixel-MOO, we analyze the success rate in flipping the prediction and the
median number of changes required to flip the model’s prediction over the 10 runs. We also apply statistical
analysis to further assess whether the observed differences are significant or not. We use Fisher’s exact test [56]
for the success rate, considering the results of each run (for each algorithm) as a binary/dichotomy outcome
(i.e., the prediction was flipped or not). To assess the significance of the differences among Pixel-SOO and
Pixel-MOO w.r.t. the number of altered pixels, we use the Wilcoxon rank sum test [38]. For both statistical
tests, we use a confidence level α = 0.95. Furthermore, we complement the test for significance with the
Vargha-Delaney statistic (Â12) to measure the effect size of the results [165].

5.4 Results

5.4.1 Results on VGG16

A full breakdown of the VGG16 results can be seen in Figure 7, which depicts the success rate of BMI-FGSM,
Pixel-SOO and Pixel-MOO in creating adversarial examples for the 50 images in our experiment. As
we can observe, BMI-FGSM was rarely able to flip the predictions for VGG16 (median, second, and third
quartiles being equal to zero), while our approaches based on pure DE can do so for all images. By comparing
Pixel-SOO and Pixel-MOO, we observe that the former always achieves a 100% success rate while the
latter achieves a lower success rate in 20% of the images. However, both our DE-based approaches can generate
an adversarial attack in at least one of the ten repetitions.
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Seed Perturbations # Generations Runtime (seconds)

Image BMI P-Soo P-Moo BMI P-Soo P-Moo BMI P-Soo P-Moo

00323 4325 25 14 240 10 18 2850 73 98
00344 - 16 13 - 6 12 - 57 77
00624 - 55 51 - 21 42 - 126 237
01204 - 39 29 - 13 22 - 87 124
02431 10620 19 18 20 10 24 227 74 123
05053 - 155 129 - 65 180 - 336 847
05412 - 65 36 - 34 128 - 188 631
05929 - 76 83 - 30 71 - 168 371
06213 - 159 92 - 76 184 - 393 1897
07160 - 70 76 - 27 70 - 153 336
08024 - 35 39 - 19 44 - 117 247
09335 - 17 11 - 9 11 - 69 72
09485 - 137 96 - 70 297 - 363 1749
09654 - 65 46 - 31 111 - 175 532
09931 - 36 22 - 11 22 - 83 104
11100 - 24 11 - 9 17 - 73 88
11177 - 69 55 - 26 68 - 150 326
11189 - 30 19 - 9 15 - 72 88
12820 - 114 100 - 43 95 - 234 473
14504 - 79 72 - 33 139 - 184 710
15116 7391 30 31 240 17 55 2852 105 292
15739 - 57 33 - 25 62 - 144 324
16615 - 39 32 - 12 24 - 83 116
20018 NA 43 39 NA 25 82 NA 147 398
20889 - 112 102 - 65 237 - 335 1138
23090 - 162 134 - 70 217 - 360 1053
23203 10246 151 140 320 64 286 3763 334 1381
23729 - 82 56 - 39 123 - 214 609
24130 - 41 24 - 27 77 - 151 406
25633 - 127 121 - 47 97 - 248 472
26738 - 67 61 - 22 41 - 132 219
27242 4885 12 6 320 4 8 3797 48 48
29251 6593 26 17 320 12 23 3790 84 124
30019 - 64 51 - 23 57 - 136 285
30959 4774 38 32 120 17 30 1449 106 160
32263 12507 23 15 80 7 12 966 61 67
32576 - 81 72 - 38 101 - 205 513
34966 - 45 39 - 17 34 - 109 182
35091 - 34 24 - 11 21 - 80 105
35614 - 83 59 - 45 155 - 235 956
36183 15992 26 22 0 10 16 44 76 104
38221 - 37 20 - 60 93 - 307 1891
41173 - 101 91 - 94 241 - 463 1523
41842 - 173 129 - 81 377 - 408 1903
43541 - 46 36 - 19 32 - 120 180
44582 - 113 119 - 51 201 - 267 1005
44788 - 80 24 - 61 61 - 313 1919
46372 11463 35 28 40 14 30 505 95 156
46979 - 49 39 - 18 31 - 111 158
48219 4244 24 16 320 8 12 1180 66 71
Mean 8872 67 54 178 32 90 1857 176 547

Table 6: Median number of pixel changes, generations, and running time required by all approaches to generate adversarial attacks on VGG16.

To better understand the time needed to converge and how many pixels have been changed by the different
algorithms, we report in Table 6 the detailed results for each image in our benchmark. In particular, we report
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Figure 8: Pixel-SOO vs. BMI-FGSM results for the image of a traffic light

the running time, the number of changes (altered pixels), and the generations required for flipping our image
prediction. In Table 6, “−” entries indicate that the corresponding algorithm could not generate an adversarial
attack within the search budget. We can observe that BMI-FGSM successfully generated adversarial attacks
(at least in one out of 10 runs) for 11 images out of 50. To do so, it changed thousands of pixels (8872 on
average) and up to 15992 pixels for the image ‘ILSVRC2012_val_00036183.JPEG’ (in short, image id = 36183
in Table 6). The image ‘ILSVRC2012_val_00020018.JPEG’ is an interesting case since BMI-FGSM threw an
error when loading the image (highlighted with NA values in Table 6).

Instead, both Pixel-SOO and Pixel-MOO were able to generate adversarial attacks for all the images in
at least 1 of the ten individual runs. Indeed, there is no “-” entry in Table 6 for these two algorithms. W.r.t.
the number of introduced changes, we can observe that both algorithms required to change fewer pixels than
the state-of-the-art BMI-FGSM. Pixel-SOO changed on average 67 pixels while Pixel-MOO generated
successful attacks by changing even fewer pixels (54 pixels on average).

To better understand the type of attacks generated by Pixel-MOO and the baselines BMI-FGSM, Fig. 8 shows
the results on detecting traffice lights. This is one of the few images for which BMI-FGSM could successfully
generate an adversarial attack. The original image was ground-truthed and classified as a ‘traffic lights’ (920).
When initially running the image through BMI-FGSM, the classification was shown as ’limousine’. This is an
incorrect classification and may be due to the pre-processing BMI-FGSM applies. However, it was then able to
perform a prediction flip to ’traffic lights’ (920). while Pixel-SOO successfully flipped it from the correct
class (’traffic light’) to a ‘limousine’ (58). Fig. 8 depicts (1) the original image, (2) the ‘perturbation mask’, and
(3) the resulting adversarial attacks.

We can observe that, for BMI-FGSM, the median amount of changed pixels is 4325 and for Pixel-SOO is
25, which is a remarkable difference. From Fig. 8, we can barely see any modification in the change matrix,
and this is because BMI-FGSM subtly changes many pixels. Our method, however, stands out for the smallest
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Figure 9: Success rate of both approaches on each model

amount of perturbations which involves making larger color differences to the pixel. However, as we can see by
the matrix and the final image, the changes applied are still very subtle.

On top of having considerably fewer perturbations and a better success rate, we observe from Table 6 that the
number of generations required by Pixel-SOO and Pixel-MOO is also much lower than the generations
needed by BMI-FGSM for converging. BMI-FGSM took on average 240 generations to reach a prediction flip,
while our Pixel-SOO method took only 10, once again being considerably quicker.

5.4.2 Results on other models

The original BMI-FGSM implementation (which we have reused) was not compatible with the other models
except for the ResNet models. However, in our experiment, BMI-FGSM took a considerable amount of time to
complete just a single run (often over 7 hours) and often could not generate any adversarial example within the
search budget. In the following, we therefore only report the results for the two DE-based approaches proposed
in this report, namely Pixel-SOO and Pixel-MOO.

Figure 9 depicts boxplots for the success rate over the different runs of Pixel-MOO and Pixel-SOO for the
five DNN models in our study. As we can observe, Pixel-SOO is successful almost 100% of the time, with
some outliers only for ResNet101. Pixel-MOO still achieves a 100% success rate for more than 50% of the
images.

These differences are also confirmed by Fisher’s exact test, of which the results are reported in Table 7. More
specifically, Pixel-MOO and Pixel-SOO are statistically equivalent in terms of success rate for the large
majority of the images (success rate over ten runs) and across all models. For around 20% of images, the single-
objective variants statistically outperform the multi-objective variant. For ResNet101 in particular, Pixel-SOO
frequently has a higher success rate compared to its multi-objective counterpart. As Pixel-MOO searches for
trade-offs between prediction flip (O1) whilst preserving as many original pixel values as possible (O2), we
hypothesize it may be slower to reach optima in comparison to Pixel-SOO, and may perform better when a
larger search budget (i.e., more generations) would be used.

Finally, we compare the attacks generated by Pixel-MOO and Pixel-SOO w.r.t. the number of pixel
perturbations injected in the seed images. Table 8 reports the results of the Wilcoxon rank sum test and the
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Table 7: Number of times one approach outperforms the other according to the Fisher’s test (p-value<0.05) w.r.t. the Success Rate

Model Pixel-MOO wins Equal Pixel-SOO wins

r50 - 44 6
r101 - 33 17
r152 - 42 8
vgg16 - 39 11
vgg19 - 43 7

Table 8: Number of times one approach outperforms the other according to the Wilcoxon test (p-value<0.05) and the Â12 statistics w.r.t. the number of
changed pixels.

Model Pixel-MOO wins Equal Pixel-SOO win

Large Medium Small Small Medium Large

r50 28 7 - 15 - - -
r101 33 3 - 13 - 1 -
r152 28 3 - 19 - - -
vgg16 26 6 - 18 - - -
vgg19 29 7 - 14 - - -

Â12 statistics. The results indicate that the adversarial attacks generated by Pixel-MOO contain fewer pixel
alterations than those produced by Pixel-SOO, and the results are statistically significant in more than 60%
of the comparison, with an effect size being large in the large majority of the significant cases.

Therefore, we can draw some general conclusion: Pixel-MOO and Pixel-SOO provide two different trade-
offs concerning the speed and magnitude of the image perturbation. Pixel-SOO is faster by producing
attacks with less subtle changes. Instead, Pixel-MOO produced more subtle attacks but requires more time to
converge.

5.5 Threats to validity

For the work presented in this report, several threats to validity can be identified.

Construct validity. While we assume our adversarial examples have perceptually visible changes, but these
changes are small enough to not change the object of focus (i.e. the ground truth) for an image, we do not
formally validate this in human experiments. Thus, it is possible that found adversarial examples may be
degraded such, that a change in ground truth label would be needed and justifiable. However, in our current
experiments, we already see many prediction flips happening when changing less than 200 (so less than 0.3%)
out of 50,176 pixels, making it unlikely that the object of focus would be completely obscured by the mutations.
Next to this, we validated the model’s initial ground truth label against the data supplied from the ImageNet
website. Despite this, the model may have an erroneous initial prediction, and even if it would be correct in
comparison to the ground truth, plausible labels beyond the indicated ground truth may exist if the visual scene
is complex or semantically ambiguous [98]. Thus, while we frame our technique as one creating adversarial
attacks, it cannot be guaranteed that we necessarily push the model towards being wrong. Still, the aspect about
adversarial attacks that keeps holding is that subtle changes lead to different prediction outcomes; as such, a flip
in output prediction still is an indicator of the model not giving robust predictions.

Internal validity. While our image selection procedure yielded a random draw of images from 50 unique
classes, the ILSVRC2012 classes semantically are not uniformly distributed (e.g. having multiple classes with
sub-species of dogs). Future sampling strategies could seek to more explicitly mitigate for this.

Our test validates both SOO and MOO using the same minimise function. The only variation for each example
is the problem, with one using the Genetic Algorithm and the other NSGA-II. We evaluate both on the same
fitness function but also filter our fitness on the matrix size within NSGA-II. Changes to the fitness evaluation
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could create threats to internal validity and future work could see a deeper connection between the two evaluation
methods to ensure changes are applied to both from one singular method.

External validity. Currently, our approach was only was tested against (the state-of-the-art) BMI-FGSM.
It will be worthwhile to also test it against further attack approaches, such as the one-pixel attack [159].
Furthermore, beyond our current set of DNN models, more canonical models exist that can be studied, such as
Inception-v3 [162].

Threats to external validity could come from the Pymoo methods we employ for our testing. Breaking changes
applied to the minimize, genetic algorithm and, or NSGA-II could have detrimental effects to our data. Beyond
that, any image we choose to test has the potential to be a threat to external validity. If the image is far too
complex and requires a significant mutation to disrupt the DL model then it no longer falls under our test case
pass of minimal changes.

Conclusion validity. In some runs, Pixel-MOO fails to find an adversarial example; further optimizations
w.r.t. population and generation size may be needed.

6 COSMOS Requirements, Integration Status & Summary of
Future Work

6.1 Status of Integration & Requirements Coverage of Tools in each Use case
and & Next Steps

This section details (with tables), for each innovation area and tool, how each tool covers the COSMOS
requirements as well as the status of integration steps. At the end of that section, we also summarize the project’s
next steps.
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6.1.1 Refactoring Framework

Table 9: COSMOS Requirement Coverage Overview

7.1 CI/CD Pipelines

ID Requirement Coverage level Description

U1 COSMOS can be executed in one or more
Docker container(s)

YES

• PYROCK: The repository contains a Dockerfile and in-
structions on how to run it with Docker.

• AP-SPOTTER: The repository contains a Dockerfile and
instructions on how to run it with Docker.

U2 COSMOS provides outputs and tools results
in a human-readable format

YES

• PYROCK: The tool outputs a .md file for analysis.

• AP-SPOTTER: The tool first outputs the results in a .csv
file, after which the tool generates a .md file. The .md file
is written in a human-readable format for the developers
to use.

U3 COSMOS provides outputs and tools results
in a machine-readable format for further pro-
cessing

YES

• PYROCK: Each separate output state of the tool, can be
analyzed by other tools.

• AP-SPOTTER: The tool first outputs the results in a .csv
file, after which the tool generates a .md file. The .csv file
is made for the possibility to have the results parsed by
different tools.

U4 COSMOS prevents application components
that are not released by a gatekeeper in
change management from being available in
later pipeline stages

NOT APPLICABLE

U5 COSMOS used in change management is
able to evaluate the impact of a changed
software component regarding number of af-
fected CPS, scope and which stakeholder-
s/roles to inform about the change

NOT APPLICABLE

U6 COSMOS is able to support the rapid deploy-
ment of new adaptations

NOT APPLICABLE

U7 COSMOS provide results in a comparable
way between adaptations (e.g. history)

YES

• PYROCK: The tool is versioned with Git.

• AP-SPOTTER: The tool is versioned with Git.

U8 COSMOS is able to support testing based on
data models

NOT APPLICABLE

U9 COSMOS is able to devise a test strategy for
system upgrades

NOT APPLICABLE

U10 COSMOS tools are able to work within the
existing inhouse CI/CD pipeline and test in-
frastructure

YES

• PYROCK: Supported by the use of Docker.

• AP-SPOTTER: Supported by the use of Docker.
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U11 COSMOS supports standalone execution of
tools (outside development flow not linked to
code change)

YES

• PYROCK: The tool can be run by itself.

• AP-SPOTTER: The tool can be run by itself.

U12 COSMOS can act as a gate keeper in the Bun-
dle Pipeline by checking test results against
software quality requirements

NOT APPLICABLE

U13 COSMOS provides a test management infras-
tructure to balance test executions over test-
ing infrastructures (e.g. scaling and model
type testing)

NOT APPLICABLE

U14 COSMOS provides integration with GitLab NO

• PYROCK: The tool does not provide integration with Git-
Lab.

• AP-SPOTTER: The tool does not provide integration with
GitLab.

U15 COSMOS is able to check for the proper sign-
ing of software components (e.g. OSGi bun-
dles)

NOT APPLICABLE

7.2 Bad Practices Detection and Anti-Patterns

ID Requirement Coverage level Description

U16 COSMOS provides tools for CI/CD best prac-
tices and anti-patterns

NOT APPLICABLE

U17 COSMOS is able to track best practices and
antipatterns

YES

• PYROCK: Not applicable.

• AP-SPOTTER: The tool detects Software Performance
Antipatterns, specific for CPS.

U18 COSMOS provides detectors for configura-
tion, code and test smells (e.g. from static
analysis, heuristics, etc.)

YES

• PYROCK: Not applicable.

• AP-SPOTTER: The tool uses static analysis to detect Soft-
ware Performance Antipatterns, specific for CPS, in the
code under analysis.

U19 Processing in COSMOS is sufficiently auto-
mated to avoid selective automation and user
interventions

PARTIALLLY

• PYROCK: After selecting which modules and projects the
tool needs to analyze, there are a few steps that need to be
taken before the final result is presented. This tool returns
information about interesting self-admitted commits.

• AP-SPOTTER: After selecting which modules the tool
needs to analyze, there are no manual tasks further re-
quired.

7.3 Simulators and HiL

ID Requirement Coverage level Description

U20 COSMOS is able to automatically generate
tests cases that effectively explore the viable
inputs for a SIL environment

NOT APPLICABLE

U21 COSMOS is able to automatically generate
simulation scenarios for HIL testing

NOT APPLICABLE

U22 COSMOS supports Simulators and HIL for
unit tests

NOT APPLICABLE
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U23 COSMOS supports Simulators and HIL for
unit integration tests

NOT APPLICABLE

U24 COSMOS supports simulation tools execut-
ing on Linux PPC or x86 platform

NOT APPLICABLE

U25 COSMOS is able to be configured to use the
available API to control test executions on
testing infrastructure

NOT APPLICABLE

U26 COSMOS is able to run software on emulated
XMEGA

NOT APPLICABLE

U27 COSMOS supports interaction with the test-
ing infrastructure over a local network

NOT APPLICABLE

U28 COSMOS is able to automatically gen-
erate simulation scenarios (e.g. in
BeamNG.research, etc.) to provide
CAN signals for HIL testing

NOT APPLICABLE

7.4 Automated Testing

ID Requirement Coverage level Description

U29 COSMOS is able to generate test reports for
groups of CPS or aggregate reports of multi-
ple CPS

NOT APPLICABLE

U30 COSMOS is able to compare different test re-
sults and to provide developer feedback point-
ing out major differences

NOT APPLICABLE

U31 COSMOS is able to work with test storage
and management facilities to allow assignabil-
ity to a specific version of CPS or software
component

NOT APPLICABLE

U32 COSMOS provides configurability to select
individual criteria for each tested software
component

YES

U33 COSMOS test results contain meta data re-
lated to the used hardware/device/CPS

NOT APPLICABLE

U34 COSMOS provides facilities for monitoring
information from the system

NOT APPLICABLE

U35 COSMOS provides embedded tests cases that
can be compiled in C/C++

NOT APPLICABLE

U36 COSMOS provides facilities for comparing
the results of test case with Simulator in the
Loop and test cases with HIL

NOT APPLICABLE

U37 COSMOS provides a facility to verify
whether the target system *hardware* meets
the requirements of the upgrade software
package (i.e. pre-check before testing)

NOT APPLICABLE

U38 COSMOS suggests which tests must be run
in which test phase to minimize efforts and
redundancy while maintaining the same level
of overall fault revealing power as before

NOT APPLICABLE

U39 COSMOS supports endurance testing of new
software releases

NOT APPLICABLE

U40 COSMOS supports the testing if new produc-
tion code are updatable

NOT APPLICABLE

U41 COSMOS supports the specification of test
configurations and associated APIs for testing
infrastructures

NOT APPLICABLE

U42 COSMOS testing supports variance of sig-
nals and to track/analyse corresponding out-
put over time

NOT APPLICABLE
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U43 COSMOS supports testing using a pre-
defined set of inputs

NOT APPLICABLE

U44 COSMOS can limit automatic testing to a
user defined duration

NOT APPLICABLE

U45 COSMOS can stop automatic testing upon
receiving an according request from the user

NOT APPLICABLE

U46 COSMOS is able to perform black box testing
of OSGi bundles

NOT APPLICABLE

7.5 Test Case Generation

ID Requirement Coverage level Description

U47 COSMOS provides support for defining test
oracles (functionality decides if system under
test passes)

NOT APPLICABLE

U48 COSMOS provides automated generation of
test oracles

NOT APPLICABLE

U49 COSMOS generates tests based on a diverse
set of testing objectives

NOT APPLICABLE

U50 COSMOS is able to generate test cases based
on API specification (REST/SOAP)

NOT APPLICABLE

U51 COSMOS is able to generate test cases based
on sensor data from MQTT messages with
JSON payload

NOT APPLICABLE

U52 COSMOS uses API / Sensor data gathered
from released software to generate tests for
software in development / staging phases

NOT APPLICABLE

U53 COSMOS is able to test CANbus API in de-
velopment / staging based on recordings of
API usage from released software

NOT APPLICABLE

U54 COSMOS uses specification of valid input
data (ranges, types, ..) to generate a wide
range of valid inputs for API testing

NOT APPLICABLE

U55 COSMOS is able to generate test inputs based
on known parameters and simulator models

NOT APPLICABLE

U56 COSMOS supports test case generation for
embedded C/C++ components

NOT APPLICABLE

7.6 Extracting Test Scenarios from User Interactions

ID Requirement Coverage level Description

U57 COSMOS can derive/adapt test oracles based
on user feedback

NOT APPLICABLE

U58 COSMOS provides facilities for evaluating
user reactions to test sequences

NOT APPLICABLE

U59 COSMOS is able to automatically cre-
ate and analyse simulation scenarios in
BeamNG.research against a defined "fitness"

NOT APPLICABLE

7.7 Run-time Verification and Monitoring

ID Requirement Coverage level Description

U60 COSMOS supports Simulators and HIL for
performance verification

NOT APPLICABLE

U61 COSMOS is able to evaluate assertions on
run-time attributes (i.e. CPU Usage, Memory,
Timings)

NOT APPLICABLE

U62 COSMOS is able to evaluate assertions on
the occurrence of system events and misbe-
haviours (e.g. deploy-install-start-stopdelete)

NOT APPLICABLE
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U63 COSMOS provides automated diagnostics of
failures (e.g. root cause analysis) detected
during operation from the runtime monitoring
framework of the application

NOT APPLICABLE

U64 COSMOS is able to analyse the reason of a
particular failure and pin down its approxi-
mate location, being software, configuration,
or hardware related

NOT APPLICABLE

U65 COSMOS provides runtime verification facil-
ities for hardware-software integration

NOT APPLICABLE

U66 COSMOS supports the runtime verification
of signal based properties

NOT APPLICABLE

7.8 Security Assessment

ID Requirement Coverage level Description

U67 COSMOS provides security testing facilities
to support security assurance processes

NOT APPLICABLE

U68 COSMOS provides cyclical evaluation of se-
curity improvements

NOT APPLICABLE

U69 COSMOS is able to support the identification
and execution of security tests for remote sys-
tem upgrades

NOT APPLICABLE

U70 COSMOS provides mechanisms for software
vulnerabilities detection for deployed compo-
nents including interactions with environment

NOT APPLICABLE

U71 COSMOS provides mechanisms for software
vulnerabilities detection prior to deployment

NOT APPLICABLE

7.9 Change Analysis

ID Requirement Coverage level Description

U72 COSMOS considers security requirements as
part of the change analysis

NOT APPLICABLE

U73 COSMOS provides an estimation of the cor-
rection time of the identified revision (i.e.
based on historical analysis/prediction)

NOT APPLICABLE

U74 COSMOS supports patch facilities with con-
figurable file outputs

NOT APPLICABLE

U75 COSMOS is able to steer test selection and
test prioritisation based on analysing software
code changes in a code commit

NOT APPLICABLE

7.10 Quality Assessment

ID Requirement Coverage level Description

U76 COSMOS allows comparisons between test
data against a set of evaluation criteria

NOT APPLICABLE

U77 COSMOS provides a facility for monitoring
activities as a basis for evaluating the quality
of a product / patch release

NOT APPLICABLE

U78 COSMOS provides guidance for error reso-
lution based on an automated approach for
failure analysis and fault localisation

NOT APPLICABLE

U79 COSMOS is able to assess the execution of
individual software components

NOT APPLICABLE

7.11 Context Detection and Assessment

ID Requirement Coverage level Description

U80 COSMOS provides an assessment of the im-
pact of component changes on other systems

NOT APPLICABLE
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U81 COSMOS is able to handle requests for patch
management of other products

NOT APPLICABLE

7.12 Interfaces

ID Requirement Coverage level Description

U82 COSMOS is able to track version information
from OSGi bundles

NOT APPLICABLE

U83 COSMOS is aware of OSGi application life-
cycle

NOT APPLICABLE

U84 COSMOS provides interfaces where baseline
test data and criteria can be inputted into the
system

NOT APPLICABLE

U85 COSMOS interfaces with the GitLab tools NOT APPLICABLE

U86 COSMOS provides interfaces for controlling
simulator executions

NOT APPLICABLE

U87 COSMOS provides an API to allow external
control, receive feedback, and test executions

NOT APPLICABLE

U88 COSMOS is able to generate testing reports
in machine readable format

NOT APPLICABLE

U89 COSMOS provides at least one input Inter-
face to receive the subjects under test

NOT APPLICABLE

U90 COSMOS provides at least one output Inter-
face for determining the subjects under test
pass/fail status

NOT APPLICABLE

7.13 DevOps Performance Indicators

ID Requirement Coverage level Description

U91 COSMOS provides a KPI framework con-
taining relevant product quality and DevOps
maturity indicators as well as indicators char-
acterising business goals

NOT APPLICABLE

U92 COSMOS KPI framework is able to collect
data along the DevOps pipeline, including
Ops data for instances in the field

NOT APPLICABLE

U93 The COSMOS KPI framework includes
lagging (backward-looking) and leading
(forward-looking) KPIs

NOT APPLICABLE

U94 COSMOS collects and calculates the KPIs
of the KPI framework and stores them for
further analysis

NOT APPLICABLE

U95 COSMOS provides targeted dashboards for
visualisation of KPIs for different stakehold-
ers (e.g., testers, developers, managers (incl.
CEO))

NOT APPLICABLE

U96 COSMOS recommends measures based on
the KPIs to improve business and develop-
ment goals

PARTIALLLY AP-SPOTTER provides warnings about performance antipatterns
while refactoring book provides guidelines on how to address them.

U97 COSMOS suggests dynamic adjustments of
the KPI framework and the collected met-
rics based on changes in the DevOps process
(meta level)

NOT APPLICABLE

U98 COSMOS enriches the KPI framework with
aggregated KPIs to provide additional and
targeted results for R&D steering (i.e. predic-
tive)

NOT APPLICABLE

7.14 General

ID Requirement Coverage level Description

U99 COSMOS supports software under test that
is written in Java

NOT APPLICABLE
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U100 COSMOS supports software under test that
provided as JAR files

NOT APPLICABLE

U101 COSMOS supports software under test pro-
vided as OSGi bundles

NOT APPLICABLE

U102 COSMOS is able to support black box testing NOT APPLICABLE

U103 COSMOS supports software under test that
is written in C/C++

NOT APPLICABLE

U104 COSMOS ensures tests respect the limita-
tions of the embedded system (e.g. number
of cores, etc.)

NOT APPLICABLE

U105 Facilities are provided to support secure ac-
cess from external tools to COSMOS

NOT APPLICABLE

U106 COSMOS is able to support existing security
access facilities for pipeline infrastructure

NOT APPLICABLE

U107 COSMOS will not break the signature of a
correctly signed software components (e.g.
OSGi bundles)

NOT APPLICABLE

U108 COSMOS provides support for JSON (e.g.
for test specifications)

NOT APPLICABLE

U109 COSMOS provides support for HTTP(S) and
MQTT

NOT APPLICABLE

U110 COSMOS supports VNEXT Pipelines (i.e.
no YAML Pipelines) with Azure DevOps
Server on Premise (not in cloud)

NOT APPLICABLE

U111 COSMOS supports the version control sys-
tems TFVC (Microsoft TFS Version Control
System) and GIT

NOT APPLICABLE

U112 COSMOS supports Microsoft C# program-
ming languages for test and product code

NOT APPLICABLE

U113 COSMOS supports *Microsoft C++* pro-
gramming languages for test and product
code

NOT APPLICABLE

U114 COSMOS supports the frontend technology
WPF and HTML5 (Angular) used in end-to-
end-testing

NOT APPLICABLE

U115 COSMOS supports the Infrastructure Tooling
in .NET Core / C# and PowerShell Core

NOT APPLICABLE

U116 COSMOS supports the requirements manage-
ment tool Microsoft TFS Work Items

NOT APPLICABLE

U117 COSMOS supports TFS WorkItems for test
management

NOT APPLICABLE

U118 COSMOS provides a facility to configure and
manage test flows (i.e. test sequences and
dependencies)

NOT APPLICABLE

U119 COSMOS checks for the presence and com-
pleteness of formal documents such as li-
censes and documentation

NOT APPLICABLE

U120 COSMOS has facilities to integrate with Jenk-
ins

NOT APPLICABLE

U121 There is at least one User Interface to verify
the functionalities of COSMOS are opera-
tional

NOT APPLICABLE
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6.1.2 Test Decomposition and Test Generation

Table 10: COSMOS Requirement Coverage Overview

7.1 CI/CD Pipelines

ID Requirement Coverage level Description

U1 COSMOS can be executed in one or more
Docker container(s)

PARTIALLLY

• MICROTESTCARVER: Has not yet been implemented with
Docker. This is intended to be completed in the near future.

• FAULTSPOTTER: Runs with Docker.

• TEST SCHEDULER: Runs with Docker.

U2 COSMOS provides outputs and tools results
in a human-readable format

YES

• MICROTESTCARVER: The tool returns unit-level test
cases, these test cases can be reviewed and adjusted by
the developers.

• FAULTSPOTTER: Returns the information in the form of a
table to the developer.

• TEST SCHEDULER: provides an ordered list of test case to
run in CI/CD pipelines.

U3 COSMOS provides outputs and tools results
in a machine-readable format for further pro-
cessing

YES

• MICROTESTCARVER: The tool returns unit-level test
cases, these test cases can be directly used as part of the
test suite.

• FAULTSPOTTER: The information is stored in a .csv for-
matted file.

• TEST SCHEDULER: it provides a JSON with the ordered
list of test cases to run.

U4 COSMOS prevents application components
that are not released by a gatekeeper in
change management from being available in
later pipeline stages

NOT APPLICABLE

U5 COSMOS used in change management is
able to evaluate the impact of a changed
software component regarding number of af-
fected CPS, scope and which stakeholder-
s/roles to inform about the change

NOT APPLICABLE

U6 COSMOS is able to support the rapid deploy-
ment of new adaptations

NOT APPLICABLE

U7 COSMOS provide results in a comparable
way between adaptations (e.g. history)

YES

• MICROTESTCARVER: The tool is versioned with Git.

• FAULTSPOTTER: The tool is versioned with Git.

• TEST SCHEDULER: The tool is versioned with Git.

U8 COSMOS is able to support testing based on
data models

NOT APPLICABLE
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U9 COSMOS is able to devise a test strategy for
system upgrades

PARTIALLLY

• The TEST SCHEDULER can be used to aid in devising a
test strategy for system upgrades.

U10 COSMOS tools are able to work within the
existing inhouse CI/CD pipeline and test in-
frastructure

PARTIALLLY

• MICROTESTCARVER: it requires the compilation of the
test with dedicated instrumentation.

• FAULTSPOTTER: it requires access to the Git history of
the project.

• TEST SCHEDULER: it requires access to the source code
but without compilation, building, or running the test (test
as text).

U11 COSMOS supports standalone execution of
tools (outside development flow not linked to
code change)

PARTIALLLY

• MICROTESTCARVER: The tool can be run by itself after
instrumentation has been applied.

• FAULTSPOTTER: The tool can be run by itself after instru-
mentation has been applied.

• TEST SCHEDULER: The tool can be run by itself.

U12 COSMOS can act as a gate keeper in the Bun-
dle Pipeline by checking test results against
software quality requirements

NOT APPLICABLE

U13 COSMOS provides a test management infras-
tructure to balance test executions over test-
ing infrastructures (e.g. scaling and model
type testing)

NOT APPLICABLE

U14 COSMOS provides integration with GitLab NO

• MICROTESTCARVER: The tool does not provide integra-
tion with GitLab.

• FAULTSPOTTER: The tool does not provide integration
with GitLab.

• TEST SCHEDULER: The tool does not provide integration
with GitLab.

U15 COSMOS is able to check for the proper sign-
ing of software components (e.g. OSGi bun-
dles)

NOT APPLICABLE

7.2 Bad Practices Detection and Anti-Patterns

ID Requirement Coverage level Description

U16 COSMOS provides tools for CI/CD best prac-
tices and anti-patterns

NOT APPLICABLE

U17 COSMOS is able to track best practices and
antipatterns

NOT APPLICABLE

U18 COSMOS provides detectors for configura-
tion, code and test smells (e.g. from static
analysis, heuristics, etc.)

NOT APPLICABLE
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U19 Processing in COSMOS is sufficiently auto-
mated to avoid selective automation and user
interventions

YES

• MICROTESTCARVER: only requires to use a dedicated
instrumentation; the test generation is fully automated.

• FAULTSPOTTER: only requires to use a dedicated instru-
mentation; the fault localization is fully automated.

• The TEST SCHEDULER is sufficiently automated.

7.3 Simulators and HiL

ID Requirement Coverage level Description

U20 COSMOS is able to automatically generate
tests cases that effectively explore the viable
inputs for a SIL environment

NOT APPLICABLE

U21 COSMOS is able to automatically generate
simulation scenarios for HIL testing

NOT APPLICABLE

U22 COSMOS supports Simulators and HIL for
unit tests

NOT APPLICABLE

U23 COSMOS supports Simulators and HIL for
unit integration tests

NOT APPLICABLE

U24 COSMOS supports simulation tools execut-
ing on Linux PPC or x86 platform

NOT APPLICABLE

U25 COSMOS is able to be configured to use the
available API to control test executions on
testing infrastructure

NOT APPLICABLE

U26 COSMOS is able to run software on emulated
XMEGA

NOT APPLICABLE

U27 COSMOS supports interaction with the test-
ing infrastructure over a local network

NOT APPLICABLE

U28 COSMOS is able to automatically gen-
erate simulation scenarios (e.g. in
BeamNG.research, etc.) to provide
CAN signals for HIL testing

NOT APPLICABLE

7.4 Automated Testing

ID Requirement Coverage level Description

U29 COSMOS is able to generate test reports for
groups of CPS or aggregate reports of multi-
ple CPS

NOT APPLICABLE

U30 COSMOS is able to compare different test re-
sults and to provide developer feedback point-
ing out major differences

NOT APPLICABLE

U31 COSMOS is able to work with test storage
and management facilities to allow assignabil-
ity to a specific version of CPS or software
component

NOT APPLICABLE

U32 COSMOS provides configurability to select
individual criteria for each tested software
component

NOT APPLICABLE

U33 COSMOS test results contain meta data re-
lated to the used hardware/device/CPS

PARTIALLLY TEST SCHEDULER provides information about which test is associ-
ated to components and build tasks

U34 COSMOS provides facilities for monitoring
information from the system

NOT APPLICABLE

U35 COSMOS provides embedded tests cases that
can be compiled in C/C++

NOT APPLICABLE

U36 COSMOS provides facilities for comparing
the results of test case with Simulator in the
Loop and test cases with HIL

NOT APPLICABLE
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U37 COSMOS provides a facility to verify
whether the target system *hardware* meets
the requirements of the upgrade software
package (i.e. pre-check before testing)

NOT APPLICABLE

U38 COSMOS suggests which tests must be run
in which test phase to minimize efforts and
redundancy while maintaining the same level
of overall fault revealing power as before

NOT APPLICABLE

U39 COSMOS supports endurance testing of new
software releases

NOT APPLICABLE

U40 COSMOS supports the testing if new produc-
tion code are updatable

NOT APPLICABLE

U41 COSMOS supports the specification of test
configurations and associated APIs for testing
infrastructures

NOT APPLICABLE

U42 COSMOS testing supports variance of sig-
nals and to track/analyse corresponding out-
put over time

NOT APPLICABLE

U43 COSMOS supports testing using a pre-
defined set of inputs

NOT APPLICABLE

U44 COSMOS can limit automatic testing to a
user defined duration

NOT APPLICABLE

U45 COSMOS can stop automatic testing upon
receiving an according request from the user

NOT APPLICABLE

U46 COSMOS is able to perform black box testing
of OSGi bundles

NOT APPLICABLE

7.5 Test Case Generation

ID Requirement Coverage level Description

U47 COSMOS provides support for defining test
oracles (functionality decides if system under
test passes)

YES MICROTESTCARVER generates unit-level test cases to strengthen
the test oracle.

U48 COSMOS provides automated generation of
test oracles

YES MICROTESTCARVER generates unit-level test cases to strengthen
the test oracle.

U49 COSMOS generates tests based on a diverse
set of testing objectives

NOT APPLICABLE

U50 COSMOS is able to generate test cases based
on API specification (REST/SOAP)

NOT APPLICABLE

U51 COSMOS is able to generate test cases based
on sensor data from MQTT messages with
JSON payload

NOT APPLICABLE

U52 COSMOS uses API / Sensor data gathered
from released software to generate tests for
software in development / staging phases

NOT APPLICABLE

U53 COSMOS is able to test CANbus API in de-
velopment / staging based on recordings of
API usage from released software

NOT APPLICABLE

U54 COSMOS uses specification of valid input
data (ranges, types, ..) to generate a wide
range of valid inputs for API testing

NOT APPLICABLE

U55 COSMOS is able to generate test inputs based
on known parameters and simulator models

NOT APPLICABLE

U56 COSMOS supports test case generation for
embedded C/C++ components

NO MICROTESTCARVER supports generating test cases for JAVA
projects.

7.6 Extracting Test Scenarios from User Interactions

ID Requirement Coverage level Description

U57 COSMOS can derive/adapt test oracles based
on user feedback

NOT APPLICABLE
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U58 COSMOS provides facilities for evaluating
user reactions to test sequences

NOT APPLICABLE

U59 COSMOS is able to automatically cre-
ate and analyse simulation scenarios in
BeamNG.research against a defined "fitness"

NOT APPLICABLE

7.7 Run-time Verification and Monitoring

ID Requirement Coverage level Description

U60 COSMOS supports Simulators and HIL for
performance verification

NOT APPLICABLE

U61 COSMOS is able to evaluate assertions on
run-time attributes (i.e. CPU Usage, Memory,
Timings)

NOT APPLICABLE

U62 COSMOS is able to evaluate assertions on
the occurrence of system events and misbe-
haviours (e.g. deploy-install-start-stopdelete)

NOT APPLICABLE

U63 COSMOS provides automated diagnostics of
failures (e.g. root cause analysis) detected
during operation from the runtime monitoring
framework of the application

NOT APPLICABLE

U64 COSMOS is able to analyse the reason of a
particular failure and pin down its approxi-
mate location, being software, configuration,
or hardware related

NOT APPLICABLE

U65 COSMOS provides runtime verification facil-
ities for hardware-software integration

NOT APPLICABLE

U66 COSMOS supports the runtime verification
of signal based properties

NOT APPLICABLE

7.8 Security Assessment

ID Requirement Coverage level Description

U67 COSMOS provides security testing facilities
to support security assurance processes

NOT APPLICABLE

U68 COSMOS provides cyclical evaluation of se-
curity improvements

NOT APPLICABLE

U69 COSMOS is able to support the identification
and execution of security tests for remote sys-
tem upgrades

NOT APPLICABLE

U70 COSMOS provides mechanisms for software
vulnerabilities detection for deployed compo-
nents including interactions with environment

NOT APPLICABLE

U71 COSMOS provides mechanisms for software
vulnerabilities detection prior to deployment

NOT APPLICABLE

7.9 Change Analysis

ID Requirement Coverage level Description

U72 COSMOS considers security requirements as
part of the change analysis

NOT APPLICABLE

U73 COSMOS provides an estimation of the cor-
rection time of the identified revision (i.e.
based on historical analysis/prediction)

NOT APPLICABLE

U74 COSMOS supports patch facilities with con-
figurable file outputs

NOT APPLICABLE

U75 COSMOS is able to steer test selection and
test prioritisation based on analysing software
code changes in a code commit

NOT APPLICABLE

7.10 Quality Assessment

ID Requirement Coverage level Description
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U76 COSMOS allows comparisons between test
data against a set of evaluation criteria

NOT APPLICABLE

U77 COSMOS provides a facility for monitoring
activities as a basis for evaluating the quality
of a product / patch release

NOT APPLICABLE

U78 COSMOS provides guidance for error reso-
lution based on an automated approach for
failure analysis and fault localisation

YES FAULTSPOTTER provides suspiciousness score for the compoments
and files that may contain a bug in case of test failures

U79 COSMOS is able to assess the execution of
individual software components

NOT APPLICABLE

7.11 Context Detection and Assessment

ID Requirement Coverage level Description

U80 COSMOS provides an assessment of the im-
pact of component changes on other systems

NOT APPLICABLE

U81 COSMOS is able to handle requests for patch
management of other products

NOT APPLICABLE

7.12 Interfaces

ID Requirement Coverage level Description

U82 COSMOS is able to track version information
from OSGi bundles

NOT APPLICABLE

U83 COSMOS is aware of OSGi application life-
cycle

NOT APPLICABLE

U84 COSMOS provides interfaces where baseline
test data and criteria can be inputted into the
system

NOT APPLICABLE

U85 COSMOS interfaces with the GitLab tools NOT APPLICABLE

U86 COSMOS provides interfaces for controlling
simulator executions

NOT APPLICABLE

U87 COSMOS provides an API to allow external
control, receive feedback, and test executions

NOT APPLICABLE

U88 COSMOS is able to generate testing reports
in machine readable format

NOT APPLICABLE

U89 COSMOS provides at least one input Inter-
face to receive the subjects under test

NOT APPLICABLE

U90 COSMOS provides at least one output Inter-
face for determining the subjects under test
pass/fail status

NOT APPLICABLE

7.13 DevOps Performance Indicators

ID Requirement Coverage level Description

U91 COSMOS provides a KPI framework con-
taining relevant product quality and DevOps
maturity indicators as well as indicators char-
acterising business goals

NOT APPLICABLE

U92 COSMOS KPI framework is able to collect
data along the DevOps pipeline, including
Ops data for instances in the field

NOT APPLICABLE

U93 The COSMOS KPI framework includes
lagging (backward-looking) and leading
(forward-looking) KPIs

NOT APPLICABLE

U94 COSMOS collects and calculates the KPIs
of the KPI framework and stores them for
further analysis

NOT APPLICABLE

U95 COSMOS provides targeted dashboards for
visualisation of KPIs for different stakehold-
ers (e.g., testers, developers, managers (incl.
CEO))

NOT APPLICABLE
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U96 COSMOS recommends measures based on
the KPIs to improve business and develop-
ment goals

NOT APPLICABLE

U97 COSMOS suggests dynamic adjustments of
the KPI framework and the collected met-
rics based on changes in the DevOps process
(meta level)

NOT APPLICABLE

U98 COSMOS enriches the KPI framework with
aggregated KPIs to provide additional and
targeted results for R&D steering (i.e. predic-
tive)

NOT APPLICABLE

7.14 General

ID Requirement Coverage level Description

U99 COSMOS supports software under test that
is written in Java

PARTIALLLY MICROTESTCARVER generates test cases from projects written in
Java. TEST SCHEDULER analyzes test cases writte in JUnit.

U100 COSMOS supports software under test that
provided as JAR files

NOT APPLICABLE

U101 COSMOS supports software under test pro-
vided as OSGi bundles

NOT APPLICABLE

U102 COSMOS is able to support black box testing YES TEST SCHEDULER require access to the test cases only

U103 COSMOS supports software under test that
is written in C/C++

PARTIALLLY TEST SCHEDULER is black-box and could be applied to other pro-
gramming languages.

U104 COSMOS ensures tests respect the limita-
tions of the embedded system (e.g. number
of cores, etc.)

NOT APPLICABLE

U105 Facilities are provided to support secure ac-
cess from external tools to COSMOS

NOT APPLICABLE

U106 COSMOS is able to support existing security
access facilities for pipeline infrastructure

NOT APPLICABLE

U107 COSMOS will not break the signature of a
correctly signed software components (e.g.
OSGi bundles)

NOT APPLICABLE

U108 COSMOS provides support for JSON (e.g.
for test specifications)

YES TEST SCHEDULER provides the sorted lists of test cases in JSON
format

U109 COSMOS provides support for HTTP(S) and
MQTT

NOT APPLICABLE

U110 COSMOS supports VNEXT Pipelines (i.e.
no YAML Pipelines) with Azure DevOps
Server on Premise (not in cloud)

NOT APPLICABLE

U111 COSMOS supports the version control sys-
tems TFVC (Microsoft TFS Version Control
System) and GIT

NOT APPLICABLE

U112 COSMOS supports Microsoft C# program-
ming languages for test and product code

NOT APPLICABLE

U113 COSMOS supports *Microsoft C++* pro-
gramming languages for test and product
code

NOT APPLICABLE

U114 COSMOS supports the frontend technology
WPF and HTML5 (Angular) used in end-to-
end-testing

NOT APPLICABLE

U115 COSMOS supports the Infrastructure Tooling
in .NET Core / C# and PowerShell Core

NOT APPLICABLE

U116 COSMOS supports the requirements manage-
ment tool Microsoft TFS Work Items

NOT APPLICABLE

U117 COSMOS supports TFS WorkItems for test
management

NOT APPLICABLE
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U118 COSMOS provides a facility to configure and
manage test flows (i.e. test sequences and
dependencies)

NOT APPLICABLE

U119 COSMOS checks for the presence and com-
pleteness of formal documents such as li-
censes and documentation

NOT APPLICABLE

U120 COSMOS has facilities to integrate with Jenk-
ins

NOT APPLICABLE

U121 There is at least one User Interface to verify
the functionalities of COSMOS are opera-
tional

NOT APPLICABLE
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6.1.3 User-oriented Maintenance and Testing

Table 11: COSMOS Requirement Coverage Overview

7.1 CI/CD Pipelines

ID Requirement Coverage level Description

U1 COSMOS can be executed in one or more
Docker container(s)

YES

• SDC-PRIORITIZER: The repository contains a Dockerfile
and instructions on how to run it with Docker.

• The Prototype for Elicitation of User (or Human) Feed-
back into the DevOps Cycle of CPSs can be run in Docker
containers (it has been dockerized by UNP as an integra-
tion action).

• PIXEL-SOO & PIXEL-MOO: Runs in Docker.

U2 COSMOS provides outputs and tools results
in a human-readable format

YES PIXEL-SOO & PIXEL-MOO provides statistics about the adversar-
ial examples being generated and the robustness of CNN models

U3 COSMOS provides outputs and tools results
in a machine-readable format for further pro-
cessing

YES REWOSA generates test reports in .csv formats

U4 COSMOS prevents application components
that are not released by a gatekeeper in
change management from being available in
later pipeline stages

NOT APPLICABLE

U5 COSMOS used in change management is
able to evaluate the impact of a changed
software component regarding number of af-
fected CPS, scope and which stakeholder-
s/roles to inform about the change

NOT APPLICABLE

U6 COSMOS is able to support the rapid deploy-
ment of new adaptations

NOT APPLICABLE

U7 COSMOS provide results in a comparable
way between adaptations (e.g. history)

YES

• SDC-PRIORITIZER: is versioned in Git.

• PIXEL-SOO & PIXEL-MOO is versioned in Git.

U8 COSMOS is able to support testing based on
data models

PARTIALLLY PIXEL-SOO & PIXEL-MOO helps assessing the robustness of
models trained or driving scenarios videos and frames

U9 COSMOS is able to devise a test strategy for
system upgrades

PARTIALLLY RESTORE is able to provide support for repairing faults in integra-
tion components

U10 COSMOS tools are able to work within the
existing inhouse CI/CD pipeline and test in-
frastructure

YES

• SDC-PRIORITIZER: Supported by the use of Docker.

• The Prototype for Elicitation of User (or Human) Feedback
into the DevOps Cycle of CPSs is supported by the use of
Docker.

• pixel just requires access to the input/output of the mdoel
under test

U11 COSMOS supports standalone execution of
tools (outside development flow not linked to
code change)

YES

• SDC-PRIORITIZER: The tool does not need to track code
changes.

• The Prototype for Elicitation of User (or Human) Feedback
into the DevOps Cycle of CPSs does not need to track code
changes.
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U12 COSMOS can act as a gate keeper in the Bun-
dle Pipeline by checking test results against
software quality requirements

NOT APPLICABLE

U13 COSMOS provides a test management infras-
tructure to balance test executions over test-
ing infrastructures (e.g. scaling and model
type testing)

PARTIALLLY RESTORE and SDC-PRIORITIZER provide information on which
tests to run. Test suite optimized with SO-SDC-Prioritizer and
RESTORE can be run in parallel over multiple machines

U14 COSMOS provides integration with GitLab NO

U15 COSMOS is able to check for the proper sign-
ing of software components (e.g. OSGi bun-
dles)

NO

7.2 Bad Practices Detection and Anti-Patterns

ID Requirement Coverage level Description

U16 COSMOS provides tools for CI/CD best prac-
tices and anti-patterns

NOT APPLICABLE

U17 COSMOS is able to track best practices and
antipatterns

PARTIALLLY

• The Prototype for Elicitation of User (or Human) Feedback
into the DevOps Cycle of CPSs Not applicable.

U18 COSMOS provides detectors for configura-
tion, code and test smells (e.g. from static
analysis, heuristics, etc.)

PARTIALLLY

• The Prototype for Elicitation of User (or Human) Feedback
into the DevOps Cycle of CPSs

U19 Processing in COSMOS is sufficiently auto-
mated to avoid selective automation and user
interventions

YES

• SDC-PRIORITIZER: The tool is usable via the CLI and
all results are machine-readable for enabling automation.
Hence, all are sufficiently automated to avoid selective
automation and user interventions.

• The Prototype for Elicitation of User (or Human) Feedback
into the DevOps Cycle of CPSs is sufficiently automated
to avoid selective automation and user interventions.

7.3 Simulators and HiL

ID Requirement Coverage level Description

U20 COSMOS is able to automatically generate
tests cases that effectively explore the viable
inputs for a SIL environment

NOT APPLICABLE

U21 COSMOS is able to automatically generate
simulation scenarios for HIL testing

PARTIALLLY

• SDC-PRIORITIZER: Possible future integration and com-
patibility with TEASER

U22 COSMOS supports Simulators and HIL for
unit tests

PARTIALLLY

• SDC-PRIORITIZER: The tool supports currently only
system-level tests. In the future, it might work with
TEASER for HiL and with multiple simulators.

U23 COSMOS supports Simulators and HIL for
unit integration tests

NOT APPLICABLE

U24 COSMOS supports simulation tools execut-
ing on Linux PPC or x86 platform

PARTIALLLY

• SDC-PRIORITIZER: The tool prioritizes test cases for the
BeamNG simulator, which only runs on Windows, but
the standalone execution of SDC-PRIORITIZER works on
Linux.
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U25 COSMOS is able to be configured to use the
available API to control test executions on
testing infrastructure

YES

U26 COSMOS is able to run software on emulated
XMEGA

NOT APPLICABLE

U27 COSMOS supports interaction with the test-
ing infrastructure over a local network

NOT APPLICABLE

U28 COSMOS is able to automatically gen-
erate simulation scenarios (e.g. in
BeamNG.research, etc.) to provide
CAN signals for HIL testing

NOT APPLICABLE

7.4 Automated Testing

ID Requirement Coverage level Description

U29 COSMOS is able to generate test reports for
groups of CPS or aggregate reports of multi-
ple CPS

NOT APPLICABLE

U30 COSMOS is able to compare different test re-
sults and to provide developer feedback point-
ing out major differences

PARTIALLLY RESTORE provides information about how to fix buggy intergration
code

U31 COSMOS is able to work with test storage
and management facilities to allow assignabil-
ity to a specific version of CPS or software
component

NOT APPLICABLE

U32 COSMOS provides configurability to select
individual criteria for each tested software
component

PARTIALLLY TEST SCHEDULER consider the cost of the test when providing
prioritization suggestions

U33 COSMOS test results contain meta data re-
lated to the used hardware/device/CPS

NOT APPLICABLE

U34 COSMOS provides facilities for monitoring
information from the system

NOT APPLICABLE

U35 COSMOS provides embedded tests cases that
can be compiled in C/C++

NOT APPLICABLE

U36 COSMOS provides facilities for comparing
the results of test case with Simulator in the
Loop and test cases with HIL

NOT APPLICABLE

U37 COSMOS provides a facility to verify
whether the target system *hardware* meets
the requirements of the upgrade software
package (i.e. pre-check before testing)

NOT APPLICABLE

U38 COSMOS suggests which tests must be run
in which test phase to minimize efforts and
redundancy while maintaining the same level
of overall fault revealing power as before

YES TEST SCHEDULER provides information about which test to run for
each component

U39 COSMOS supports endurance testing of new
software releases

PARTIALLLY Test suite optimized by TEST SCHEDULER can be ran over multiple
releases

U40 COSMOS supports the testing if new produc-
tion code are updatable

NOT APPLICABLE

U41 COSMOS supports the specification of test
configurations and associated APIs for testing
infrastructures

NO

U42 COSMOS testing supports variance of sig-
nals and to track/analyse corresponding out-
put over time

NOT APPLICABLE

U43 COSMOS supports testing using a pre-
defined set of inputs

YES TEST SCHEDULER requires in input the folder(s) with the test cases
to analyse

U44 COSMOS can limit automatic testing to a
user defined duration

YES With TEST SCHEDULER, users can specify how much time and
resources to spend on regression testing
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U45 COSMOS can stop automatic testing upon
receiving an according request from the user

NO

U46 COSMOS is able to perform black box testing
of OSGi bundles

NOT APPLICABLE

7.5 Test Case Generation

ID Requirement Coverage level Description

U47 COSMOS provides support for defining test
oracles (functionality decides if system under
test passes)

NO

U48 COSMOS provides automated generation of
test oracles

YES PIXEL-SOO & PIXEL-MOOrely on metamorphic testing to deter-
mine whether an attack is successful or not

U49 COSMOS generates tests based on a diverse
set of testing objectives

YES TEST SCHEDULER and SDC-PRIORITIZER use multi-objective
approaches to optimize a diverse set of objectices

U50 COSMOS is able to generate test cases based
on API specification (REST/SOAP)

NOT APPLICABLE

U51 COSMOS is able to generate test cases based
on sensor data from MQTT messages with
JSON payload

NOT APPLICABLE

U52 COSMOS uses API / Sensor data gathered
from released software to generate tests for
software in development / staging phases

NOT APPLICABLE

U53 COSMOS is able to test CANbus API in de-
velopment / staging based on recordings of
API usage from released software

NOT APPLICABLE

U54 COSMOS uses specification of valid input
data (ranges, types, ..) to generate a wide
range of valid inputs for API testing

NOT APPLICABLE

U55 COSMOS is able to generate test inputs based
on known parameters and simulator models

NOT APPLICABLE

U56 COSMOS supports test case generation for
embedded C/C++ components

NO

7.6 Extracting Test Scenarios from User Interactions

ID Requirement Coverage level Description

U57 COSMOS can derive/adapt test oracles based
on user feedback

PARTIALLLY

U58 COSMOS provides facilities for evaluating
user reactions to test sequences

PARTIALLLY

U59 COSMOS is able to automatically cre-
ate and analyse simulation scenarios in
BeamNG.research against a defined "fitness"

YES

• SDC-PRIORITIZER: The multi-objective approach opti-
mizes the test diversity and the execution time. Both as-
pects are reflected in a fitness function(s).

7.7 Run-time Verification and Monitoring

ID Requirement Coverage level Description

U60 COSMOS supports Simulators and HIL for
performance verification

NO

U61 COSMOS is able to evaluate assertions on
run-time attributes (i.e. CPU Usage, Memory,
Timings)

NO

U62 COSMOS is able to evaluate assertions on
the occurrence of system events and misbe-
haviours (e.g. deploy-install-start-stopdelete)

NOT APPLICABLE

U63 COSMOS provides automated diagnostics of
failures (e.g. root cause analysis) detected
during operation from the runtime monitoring
framework of the application

NOT APPLICABLE
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U64 COSMOS is able to analyse the reason of a
particular failure and pin down its approxi-
mate location, being software, configuration,
or hardware related

NOT APPLICABLE

U65 COSMOS provides runtime verification facil-
ities for hardware-software integration

NOT APPLICABLE

U66 COSMOS supports the runtime verification
of signal based properties

NOT APPLICABLE

7.8 Security Assessment

ID Requirement Coverage level Description

U67 COSMOS provides security testing facilities
to support security assurance processes

NOT APPLICABLE

U68 COSMOS provides cyclical evaluation of se-
curity improvements

NOT APPLICABLE

U69 COSMOS is able to support the identification
and execution of security tests for remote sys-
tem upgrades

NOT APPLICABLE

U70 COSMOS provides mechanisms for software
vulnerabilities detection for deployed compo-
nents including interactions with environment

NOT APPLICABLE

U71 COSMOS provides mechanisms for software
vulnerabilities detection prior to deployment

NOT APPLICABLE

7.9 Change Analysis

ID Requirement Coverage level Description

U72 COSMOS considers security requirements as
part of the change analysis

NOT APPLICABLE

U73 COSMOS provides an estimation of the cor-
rection time of the identified revision (i.e.
based on historical analysis/prediction)

NOT APPLICABLE

U74 COSMOS supports patch facilities with con-
figurable file outputs

NOT APPLICABLE

U75 COSMOS is able to steer test selection and
test prioritisation based on analysing software
code changes in a code commit

NOT APPLICABLE

7.10 Quality Assessment

ID Requirement Coverage level Description

U76 COSMOS allows comparisons between test
data against a set of evaluation criteria

YES PIXEL-SOO & PIXEL-MOOprovides test results comparison be-
tween original data-sample and generated attacks

U77 COSMOS provides a facility for monitoring
activities as a basis for evaluating the quality
of a product / patch release

NOT APPLICABLE

U78 COSMOS provides guidance for error reso-
lution based on an automated approach for
failure analysis and fault localisation

PARTIALLLY RESTORE uses fault localization and provide candidate patches for
the integ¯ration components

U79 COSMOS is able to assess the execution of
individual software components

NOT APPLICABLE

7.11 Context Detection and Assessment

ID Requirement Coverage level Description

U80 COSMOS provides an assessment of the im-
pact of component changes on other systems

NOT APPLICABLE

U81 COSMOS is able to handle requests for patch
management of other products

NOT APPLICABLE

7.12 Interfaces

ID Requirement Coverage level Description
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U82 COSMOS is able to track version information
from OSGi bundles

NOT APPLICABLE

U83 COSMOS is aware of OSGi application life-
cycle

NOT APPLICABLE

U84 COSMOS provides interfaces where baseline
test data and criteria can be inputted into the
system

NOT APPLICABLE

U85 COSMOS interfaces with the GitLab tools NOT APPLICABLE

U86 COSMOS provides interfaces for controlling
simulator executions

NOT APPLICABLE

U87 COSMOS provides an API to allow external
control, receive feedback, and test executions

NOT APPLICABLE

U88 COSMOS is able to generate testing reports
in machine readable format

NOT APPLICABLE

U89 COSMOS provides at least one input Inter-
face to receive the subjects under test

NOT APPLICABLE

U90 COSMOS provides at least one output Inter-
face for determining the subjects under test
pass/fail status

NOT APPLICABLE

7.13 DevOps Performance Indicators

ID Requirement Coverage level Description

U91 COSMOS provides a KPI framework con-
taining relevant product quality and DevOps
maturity indicators as well as indicators char-
acterising business goals

NOT APPLICABLE

U92 COSMOS KPI framework is able to collect
data along the DevOps pipeline, including
Ops data for instances in the field

NOT APPLICABLE

U93 The COSMOS KPI framework includes
lagging (backward-looking) and leading
(forward-looking) KPIs

NOT APPLICABLE

U94 COSMOS collects and calculates the KPIs
of the KPI framework and stores them for
further analysis

NOT APPLICABLE

U95 COSMOS provides targeted dashboards for
visualisation of KPIs for different stakehold-
ers (e.g., testers, developers, managers (incl.
CEO))

NOT APPLICABLE

U96 COSMOS recommends measures based on
the KPIs to improve business and develop-
ment goals

NOT APPLICABLE

U97 COSMOS suggests dynamic adjustments of
the KPI framework and the collected met-
rics based on changes in the DevOps process
(meta level)

NOT APPLICABLE

U98 COSMOS enriches the KPI framework with
aggregated KPIs to provide additional and
targeted results for R&D steering (i.e. predic-
tive)

NOT APPLICABLE

7.14 General

ID Requirement Coverage level Description

U99 COSMOS supports software under test that
is written in Java

NOT APPLICABLE

U100 COSMOS supports software under test that
provided as JAR files

NOT APPLICABLE

U101 COSMOS supports software under test pro-
vided as OSGi bundles

NOT APPLICABLE
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U102 COSMOS is able to support black box testing YES PIXEL-SOO & PIXEL-MOO, REWOSA, and SDC-PRIORITIZER
are fully black-box

U103 COSMOS supports software under test that
is written in C/C++

NOT APPLICABLE

U104 COSMOS ensures tests respect the limita-
tions of the embedded system (e.g. number
of cores, etc.)

NOT APPLICABLE

U105 Facilities are provided to support secure ac-
cess from external tools to COSMOS

NOT APPLICABLE

U106 COSMOS is able to support existing security
access facilities for pipeline infrastructure

NOT APPLICABLE

U107 COSMOS will not break the signature of a
correctly signed software components (e.g.
OSGi bundles)

NOT APPLICABLE

U108 COSMOS provides support for JSON (e.g.
for test specifications)

NOT APPLICABLE

U109 COSMOS provides support for HTTP(S) and
MQTT

NOT APPLICABLE

U110 COSMOS supports VNEXT Pipelines (i.e.
no YAML Pipelines) with Azure DevOps
Server on Premise (not in cloud)

NOT APPLICABLE

U111 COSMOS supports the version control sys-
tems TFVC (Microsoft TFS Version Control
System) and GIT

NOT APPLICABLE

U112 COSMOS supports Microsoft C# program-
ming languages for test and product code

NOT APPLICABLE

U113 COSMOS supports *Microsoft C++* pro-
gramming languages for test and product
code

NOT APPLICABLE

U114 COSMOS supports the frontend technology
WPF and HTML5 (Angular) used in end-to-
end-testing

NOT APPLICABLE

U115 COSMOS supports the Infrastructure Tooling
in .NET Core / C# and PowerShell Core

NOT APPLICABLE

U116 COSMOS supports the requirements manage-
ment tool Microsoft TFS Work Items

NOT APPLICABLE

U117 COSMOS supports TFS WorkItems for test
management

NOT APPLICABLE

U118 COSMOS provides a facility to configure and
manage test flows (i.e. test sequences and
dependencies)

PARTIALLLY The TEST SCHEDULER considers test sequences and dependencies.

U119 COSMOS checks for the presence and com-
pleteness of formal documents such as li-
censes and documentation

NOT APPLICABLE

U120 COSMOS has facilities to integrate with Jenk-
ins

NOT APPLICABLE

U121 There is at least one User Interface to verify
the functionalities of COSMOS are opera-
tional

NOT APPLICABLE

6.2 Future work

In previous sections, we elaborated on the status of the current development. In the following sections, we
elaborate on the future work and with specific focus on activities that are expected to be addressed in next
months of the COSMOS projects. The main future activities will be devoted to the following aspects:
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• For PIXEL-SOO & PIXEL-MOO, we have shown how our tool is effective and efficient in generating
adversarial example of vision components of CPS, and convolutional neural networks in particular. As
part of our future work, we aim to more explicitly look at the potential difficulty of images due to
semantic ambiguity, which already can show in the initial classification confidence of a model [98].
Furthermore, we intend to extend our comparison to multiple deep learning models, and different search
algorithms (e.g., MOEA/D [179] and AGE-MOEA [124]) or combine the strengths of Pixel-MOO and
Pixel-SOO with hybrid approaches.

• We have implemented our RESTORE as a prototype. Part of our future agenda is to complete the
evaluation of the tool.

• REWOSA has been implemented and evaluated with for BeamNG v0.24.0.1. However, this version of
the BeamNG simulation engine is no longer supported. Part of our activities will be devoted in updating
REWOSA with the latest BeamNG version (v0.26.2.0).

• The implementation of the TEST SCHEDULER tool will be evaluated with both open source and industrial
data.

• The evaluation for the MICROTESTCARVER tool will be expanded with a larger set of CPS projects.
Moreover, Docker support will be added.
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