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Executive Summary

Continuous integration and delivery (CI/CD) are nowadays at the core of software development. Their benefits
come at the cost of setting up and maintaining the CI/CD pipeline, which require knowledge and skills often
orthogonal to those entailed in other software-related tasks. While several recommender systems have been
proposed to support developers across a variety of tasks, little automated support is available when it comes to
setting up and maintaining CI/CD pipelines.

We present a Transformer-based approach supporting developers in writing a specific type of CI/CD pipelines,
namely GitHub or GitLab workflows, yet the tool can be trained and applied to other CI/CD pipelines.

As shown in this delivery, workflow completion is a much harder task than conventional code completion.
This is mainly due to (i) the mix of specific scripting elements having completely different objectives (e.g.,
configuring a server, downloading a library, etc.), and (ii) the presence of project-specific elements such as
directory paths or URLs to download resources.

We deal with this complexity by designing an abstraction process to help the learning of the transformer
while still making the proposed approach able to recommend very peculiar workflow elements such as tool
options and scripting elements. Our empirical study conducted on GitHub actions shows that the proposed
approach provides up to 34.23% correct predictions, and the model’s confidence is a reliable proxy for the
recommendations’ correctness likelihood.

Page vi Version 1.0
Confidentiality: Public Distribution

30 June 2023



D3.4 Automated bad practice resolution recommender for CPS

1 Introduction

Setting and maintaining a continuous integration and delivery (CI/CD) pipeline is crucial for any software
project. Indeed, CI/CD contributes to enhancing software quality and developers’ productivity [15], and to
speed up release cycles [61]. Nevertheless, previous research has highlighted the challenges encountered by
developers in setting up and maintaining CI/CD pipelines [14, 32, 73]. Such challenges are exacerbated by the
separation between the development and operation roles [25].

Despite the availability of modern CI/CD infrastructures and reusable assets (e.g., GitHub actions), the intrinsic
CI/CD requirements and underlying technology of a given project may still make this task hard [32, 71].
Finally, challenges in setting up CI/CD pipelines have also been pointed in previous COSMOS deliverables,
and in particular D3.2 [22] and a companion article [72].

For example, this could be the case when a system needs to be deployed and tested on different operating
systems or even embedded devices. The aforementioned challenges entail the need for recommender systems
aimed at helping developers in setting up and maintaining CI/CD pipelines. This need and its possible solutions
are somewhat similar to those related to automated code completion, where approaches have been defined
either to provide suggestions about non-trivial, generic code elements (up to blocks) to be completed [20], or
more specialized suggestions, e.g., related to creating assertions [67], or repairing vulnerabilities [17, 26] and
bugs [18, 39, 40].

That being said, helping developers in setting up a CI/CD pipeline poses unique challenges. First, we con-
jecture that the structure and code of a CI/CD pipeline may be less regular and repetitive than conventional
source code. This is because it mixes up very specific scripting elements (e.g., related to configuring a server,
downloading certain libraries, etc.) with some more recurring and regular reusable elements (e.g., the actions
in the case of GitHub), up to natural language elements. Second, a CI/CD pipeline contains several extremely
context-specific elements. These are, for example, paths of installation directories, or URLs of resources to
download. This creates major challenges to the use of data-driven techniques for the automated recommenda-
tions of these elements.

In this deliverable, we describe an approach leveraging Transformer models [63] to provide automated comple-
tion of GitHub and GitLab workflows. Given the availability of data, the experimentation has been conducted
on GitHub data, yet the tool has been developed to also support GitLab workflows. To develop (and train) the
tool, we have leveraged the existing body of GitHub workflows starting from a dataset by Decan et al. [23]. To
make a GitHub workflow completion possible, we have defined and implemented a multi-step pre-processing
including an abstraction of the tokens for which their verbatim prediction would not be feasible (e.g., a very
specific path in a project) while still leaving to the tool the ability to recommend some very peculiar workflow
elements such as tool options and other scripting elements.

The proposed tool can recommend GitHub workflow completions in different modes that mimic how a de-
veloper may implement the workflow, i.e., (i) suggesting the next statement (a GitHub step), or (ii) helping
to complete a job with implementation elements once the developer has defined, in plain English, what the
job should do. Similarly, the tool can recommend GitLab completion by recommending how to complete (the
next) scripts for a given job.

2 Background: GitHub and GitLab CI/CD Jobs

To better understand how the tool work, in the following we briefly outline the structure of the GitHub and
GitLab CI/CD workflows.

2.1 Structure of GitHub Workflows

30 June 2023 Version 1.0
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1 name: CBuild
2 on:
3 push:
4 branches: [ main ]
5 pull_request:
6 branches: [ main ]
7 jobs:
8 build:
9 runs-on: ubuntu-latest

10 container:
11 image: gcc
12 steps:
13 - name: checking out the repository
14 uses: actions/checkout@v2
15 - name: Running makefile to compile the program
16 run: make

Listing 1: GitHub workflow example

GitHub workflows integrate CI/CD in the GitHub infrastructure. A GitHub workflow (example in Listing 1)
is a YAML file located under the .github/workflows (sub)directory of a repository. As specified by the
on: clause, a workflow is triggered based on some events (e.g., a push, a pull request) and executes a series
of jobs, specified after the jobs keyword (as the job named build in the figure).

Jobs are units of execution of a CI/CD process and can run in parallel or sequentially (if dependencies be-
tween jobs are specified) on runners. Unless they use explicit ways to exchange information (e.g., uploading
and downloading artifacts in a storage area), jobs are independent of each other. Runners can be local or
remote virtual machines or containers. Runners and containers are specified after the job name, using the
runs-on clause, and, if containers are used, the container: and image clauses. The job in the exam-
ple runs on an Ubuntu virtual machine and uses a container from an image bringing the gcc compiler. Each
job consists of a sequence of steps. In Listing 1, steps are all items preceded by a dash following the keyword
steps. There are two ways to implement a step. The first (denoted by the keyword uses) is to leverage
GitHub actions, i.e., reusable applications available on GitHub that implement recurring tasks. For example,
the actions/checkout@v2 is version 2 of an action checking the content of the GitHub repository branch
on which the workflow has been triggered. The second (keyword run) consists of directly executing what-
ever application is available in the virtual machine/container (e.g., apt-get to install components, gradle
to run a Gradle build). Run steps are typically used for specific tasks for which an action is not available, or the
task is so simple as to not require an action. Optionally, a step can be documented with a textual description of
its action or run command, using the name keyword.

Further information about GitHub workflows and actions is available on the GitHub documentation [4].

2.2 Structure of GitLab Workflows

Listing 2 shows an example of a GitLab CI/CD workflow. As the figure shows, GitLab workflows have
significant differences with respect to GitHub workflows.

The first important difference is that, while GitHub provide reusable assets to execute commands (i.e., actions),
GitLab does not. Essentially, all commands are executed by invoking operating system commands or scripts.
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1 image: gradle:alpine
2

3 variables:
4 GRADLE_OPTS: "-Dorg.gradle.daemon=false"
5

6 before_script:
7 - export GRADLE_USER_HOME=`pwd`/.gradle
8

9 stages:
10 - build
11 - test
12

13 build-job:
14 stage: build
15 script:
16 - gradle compileJava
17

18 unit-test-job:
19 stage: test
20 script:
21 - echo "Running unit tests..."
22 - gradle test

Listing 2: GitLab workflow example

30 June 2023 Version 1.0
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This has also a consequence on the extent to which an automated completion tool for GitLab may effectively
work, and the challenges that can be encountered in training a completion model for GitLab.

Other than that, a GitLab workflow has the following characteristics:

• It is based on a Docker image, specified at the beginning of the workflow using the image: keyword.
• Jobs are defined using arbitrary names. Jobs are recognized because they are top level elements in the

workflow structure, and must contain a script clause. Unless they are contained in a staged build,
jobs are executed in parallel, independently from each other.

• Script clauses specify the commands to be executed in a job. For example, in Listing 2, the script of
the build-job job executes the command gradle compileJava, whereas the unit-test-job script has
two commands in sequence, an echo and a gradle test.

• Jobs can be staged (i.e., organized sequentially) by defining the stages through the stages: clause,
where the stage names are defined. Such names must then be recalled inside each job using the stage
keyword, to specify in what stage a job is being executed. For example, the unit-test-job job is executed
in the test stage, that follows the build stage.

Further information about GitLab CI/CD workflows is available on the GitLab documentation [5].

3 Approach

This section describes the proposed approach to recommend CI/CD workflow completions. In the following,
we will mainly describe the tool for what concerns GitHub workflow completions. That being said, as ex-
plained in the introduction, the tool has been developed to also support GitLab workflow completion. Finally,
it can be easily adapt to work on other CI/CD workflow configuration scripts or, in principle, to support the
completion of other configuration files.

The proposed tool leverages the Text-to-Text Transfer Transformer (T5) model by Raffel et al. [51]. First, we
pre-train T5 by experimenting with different strategies. Then, we train the tokenizer needed by the proposed
approach and, after an hyperparameter calibration, we fine-tune T5 with instances specifically related to the
actual prediction tasks. After that, we use the trained model for two different kinds of predictions, i.e., (i)
adding the next step in a workflow job, or (ii) completing a job whose steps have just been specified in terms
of natural language text.

In the following, after overviewing the T5 model, we describe the different steps of the approach.

We start by overviewing the T5 model we exploit in the tool (Section 3.1). Then, we outline in Section 3.2
the abstraction schema we devised to help the model learning in the presence of context-specific elements to
predict (e.g., a file path used in a project). Section 3.3 details the procedure we used to build the datasets
needed for training and testing the tool, as well as for the T5’s hyperparameters tuning (Section 3.4). Finally,
Section 3.5 explains how the model generates predictions once trained.

3.1 An overview of T5

T5 [51] is an encoder-decoder Transformer [63] designed to work in a text-to-text setting. Whatever the
generation task is, T5 can be employed as long as both the input and the output can be represented as textual
strings (e.g., translating from English to Spanish, outputting the fixed version of a provided buggy code). We
have chosen T5 given its successful application in several code completion/generation tasks [45, 20, 59, 65].

The training procedure of T5 is usually performed in two steps. First, the model is pre-trained on a large-
scale dataset using self-supervised training. The pre-training provides T5 with general knowledge about the
language(s) of interest. For example, assuming the will of building an English-to-Spanish translator, we could
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provide as an input to the model English and Spanish sentences having 15% of their tokens masked, with the
model in charge of predicting them. That makes the pre-training fully self-supervised. Important to note is the
self-supervised nature of the pre-training: We can automatically create as many pre-training instances as we
wish by randomly masking tokens in sentences.

Subsequently, the model undergoes fine-tuning, which is supervised training (e.g., providing pairs composed
of an English sentence and its Spanish translation). Fine-tuning specializes the model for the task of interest.

Raffel et al. experimented with five T5 variants, differing in terms of the number of trainable parameters:
small, base, large, 3 billion, and 11 billion. Considering our computational resources and recent successful
application of T5small to automate code-related tasks [45, 20, 59, 65], we opted for the simplest architecture
which still features 60M trainable parameters, consistently with large language models used in the literature.
For additional architectural details, we point the reader to the work by Raffel et al. [51].

3.2 Abstraction

We conjecture (and will later experiment) that learning to autocomplete GitHub or GitLab workflows on raw
text (i.e., with no preprocessing) is extremely challenging, more than providing verbatim completions of source
code. This is mainly due to the presence of context-specific (and often unique, i.e., they have not been seen be-
fore) elements in the workflows, such as paths and urls. For example, Listing 3 shows a GitHub workflow
featuring elements such as the ./vendor/bin/phpunit path or the specific version of an action the user
is using (e.g., actions/checkout@v2), which are likely to hinder the completion learning. Similar considera-
tions (and similar abstraction heuristics) can be applied for GitLab, with the only difference that GitLab does
not have actions.

These are some of the elements we aim at abstracting with special tokens (e.g., replacing a path with the
<PATH> tag), as it can be seen in Listing 4. Such an abstraction moves the definition of these context-specific
elements from the T5 model (now only in charge of indicating the need for e.g., a <PATH>) to the developer.
We acknowledge that this might imply a slightly higher effort on the developer’s side who needs to “fill the
placeholders” (i.e., the special tags) in the prediction.

To define the abstraction rules, we leverage the unique set of tokens extracted from the workflows of the
projects listed in the GitHub actions dataset by Decan et al. [24]. The dataset features 67,870 GitHub reposi-
tories, 29,778 of which use GitHub workflows, and is the one we use to create our training and testing datasets
as described in Section 3.3. Given the list in that dataset, we were able to clone 69,040 GitHub repositories,
which is more than the 67,870 for which Decan et al. extracted workflow data. From those, we retrieved all
GitHub workflows and extracted their “tokens”. A token can be an action name, a command to run, the option
of a command, a path, etc. Out of 10,188,342 unique tokens, 284,463 appear in one workflow, i.e., are very
specific, confirming our conjecture about the need for abstraction. We randomly selected 1,000 of those to-
kens for manual inspection. We clustered them based on their “type” (e.g., path, file). Such a process has
been performed by the first author, with the results checked by three other authors. Such a process led to the
definition of five categories of context-specific tokens we aim at abstracting: url (i.e., a reference to a web re-
source, such as an IP address), file (i.e., a file name/path), path (i.e., a path to a directory or to any other
resource which cannot be identified as a file since lacking extension), version number, (i.e., the specific
version of a library, language, or other resources being used), and action version (i.e., the specific ver-
sion of an action that is used). For each category, we defined a special token acting as a placeholder during the
abstraction. Note that we distinguish between version number and action version since we assume
this could provide additional information to the model which might be useful for the learning.

The abstraction example reported in Listing 4 shows how we replace the action version of the to-
ken actions/checkout@v2 with the special <PLH> token, while files and urls such as bin/-
install-wp-test.sh and 127.0.0.1 are replaced with ⟨FILE⟩ and ⟨URL⟩, respectively. In a nutshell,
we use regular expressions and heuristics to identify the token types of interest and abstract them. For example,
to identify path tokens, we use the following regular expression:
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^(.*/)?(?:$|(.+?)(?:(\.[^.]*$)|$))

The identification of files leverages, besides a regular expression, a list of extensions we defined during the
manual analysis of the tokens appearing in a single workflow.

3.3 Training and Testing Datasets

We detail in this section the building of the pre-training and fine-tuning datasets used to train the tool for the
GitHub experimentation.

3.3.1 Pre-training dataset

Since the goal of pre-training is to provide T5 with general knowledge about the language(s) of interest, we
built a pre-training dataset featuring YAML files (i.e., the language used in GitHub workflows), and in particular
both general-purpose YAML files as well as those implementing GitHub actions. The former are used for
various purposes, e.g., CI/CD scripts for other infrastructures (e.g., Travis-CI) or other configuration files.

GitHub actions feature a syntax closer to workflows and therefore would provide further knowledge during
pre-training.

We collected general-purpose YAML files in two steps. First, we searched for YAML files in the 69,040 GitHub
repositories we cloned, while excluding those implementing GitHub workflows that we will use to fine-tune the
model (i.e., those contained in the ./github/workflows/ directory). This resulted in 443,037 general-
purpose YAML files. To further expand this dataset, we cloned all public non-forked repositories having at
least 100 stars and 100 commits, and created in the time range that goes from 2022-25-01 (i.e., the day after
Decan et al. built their dataset) to 2022-30-09 (the day in which we performed the data collection). The
identification of these repositories has been performed using the GitHub search platform by Dabić et al. [6].
We successfully cloned additional 1,124 GitHub repositories that are not in the dataset by Decan et al. nor
are forks of those. To create the pre-training dataset, which counts a body of 146,006 general-purpose YAML
files, we excluded duplicated instances as well as those including non-ASCII tokens and all those having
#tokens ≥ 1024. Fixing an upper-bound in terms of the number of tokens for the model’s input helps in
taming the computational cost of training and is a common practice in the literature exploiting DL models to
automate code-related tasks [29, 64, 43, 60, 44, 20].

Concerning the YAML files implementing GitHub actions, we collected 13,638 unique examples about the
usage of actions from the GitHub Marketplace [3].

The pre-training dataset features 146,066 general-purpose YAML files and 13,638 YAML files implementing
GitHub actions. Each instance in the dataset is a pair featuring (i) a YAML file with 15% of its tokens randomly
masked, and (ii) the expected target, namely the tokens the model is expected to predict instead of the masked
ones.

3.3.2 Fine-tuning dataset

Our fine-tuning dataset features 73,708 GitHub workflows from the whole body of GitHub projects made
available by Decan et al. [24]. On top of those, we mined 733 workflows from the 1,124 GitHub repositories
previously mentioned.

We removed duplicated workflows, and, as done before, all those having #tokens ≥ 1024, instances contain-
ing non-ASCII characters, and those which overlap with instances in the pre-training dataset. We were left
with 17,935 unique workflows that we use to train and evaluate the proposed approach. We split the dataset
into training (80%), validation (10%), and test (10%), making sure that all the instances coming from the same
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1 name: PHPUnit
2 on:
3 push:
4 branches:
5 - develop
6 - trunk
7 paths:
8 - '**.php'
9 pull_request:

10 branches:
11 - develop
12 jobs:
13 phpunit:
14 runs-on: ubuntu-latest
15 steps:
16 - name: Checkout
17 uses: actions/checkout@v2
18 - uses: getong/mariadb-action@v1.1
19 - name: Set PHP version
20 uses: shivammathur/setup-php@v2
21 with:
22 php-version: '7.4'
23 coverage: none
24 tools: composer:v1
25 - name: Install dependencies
26 run: composer install
27 - name: Setup WP Tests
28 run: bash bin/install-wp-tests.sh
29 wordpress_test root '' 127.0.0.1
30 - name: PHPUnit
31 run: './vendor/bin/phpunit'

Listing 3: Example of Raw Instance for GitHub workflows.
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1 name: PHPUnit
2 on:
3 push:
4 branches:
5 - develop
6 - trunk
7 paths:
8 - '<FILE>'
9 pull_request:

10 branches:
11 - develop
12 jobs:
13 phpunit:
14 runs-on: ubuntu-latest
15 steps:
16 - name: Checkout
17 uses: actions/checkout <PLH>
18 - uses: getong/mariadb-action<PLH>
19 - name: Set PHP version
20 uses: shivammathur/setup-php<PLH>
21 with:
22 php-version: '<V_NUMBER>'
23 coverage: none
24 tools: composer:v1
25 - name: Install dependencies
26 run: composer install
27 - name: Setup WP Tests
28 run: bash <FILE> wordpress_test
29 root '' <URL>
30 - name: PHPUnit
31 run: '<PATH>'

Listing 4: Example of Abstracted Instance for GitHub workflows.
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1 name: Bundle Size
2 on:
3 pull_request:
4 branches:
5 - master
6 jobs:
7 size:
8 runs-on: ubuntu-latest
9 env:

10 CI_JOB_NUMBER: 1
11 steps:
12 - name: Cache node_modules
13 uses: actions/cache@v1
14 id: yarn-cache-node-modules
15 with:
16 path: node_modules
17 key: ${{ runner.os }}-yarn-cache-node-modules-$
18 {{ hashFiles('**/yarn.lock') }}
19 - name: Yarn install
20 if: steps.yarn-cache-node-modules.outputs.cache-hit
21 != 'true'
22 run: yarn install --frozen-lockfile

Listing 5: Example of instance for fine-tuning the T5 model: GitHub original workflow

project are assigned to the same subset, thus avoiding leakage of data among the three sets. We obtained 14,348
workflows to train the models, 1,793 for hyperparamenter tuning, and 1,794 to test the best configuration iden-
tified.

We then fine-tune the model to support two workflow completion scenarios. In the first one, namely next
step (NStask ), the model is in charge of predicting the complete nth step a developer is likely to write in
a workflow given the preceding already written tokens. A step may or may not contain a textual description
(name), and it can either consist of action invocations (uses) or commands (run). In the second scenario,
namely job completion (JCtask ), the model gets as input an abstract job where only names are specified, and
it is asked to complete it step by step. Listing 5, Listing 6, and Listing 7 help in better understanding these
two scenarios by depicting a fine-tuning instance from our dataset.

Listing 5 and Listing 6 depict a fine-tuning scenario for NStask . In this case, we are simulating a scenario
in which the developer already wrote the first lines of the workflow (i.e., up to steps:), and the proposed
approach is asked to predict the first step of the job (i.e., uses: actions/checkout@v2). Note that
we can extract multiple (5) training instances from this workflow. Indeed, we can ask the model to predict the
first step of the job given just the preceding statements. Then, we can ask the model to predict the second step
also given the definition of the first step, etc. Listing 5 and Listing 7 depict a fine-tuning instance for JCtask

. In this case, we assume that the developer wrote the skeleton of a job by only defining, when available, the
job’s name it should feature (e.g., Yarn install). The model is in charge to predict the step masked with the
<TO_BE_PREDICTED> token, while the <FOR-LATER-USE> token is used to indicate steps that are not
yet implemented. Also in this case we can build multiple fine-tuning instances. In particular, we can start
predicting the first step in a job using the following n − 1 for which only the name is provided; then, we can
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1 ...
2 jobs:
3 size:
4 runs-on: ubuntu-latest
5 env:
6 CI_JOB_NUMBER: 1
7 steps:
8 - <TO_BE_PREDICTED>

Listing 6: Example of instance for fine-tuning the T5 model: next statement task for GitHub

1 ...
2 jobs:
3 runs-on: ubuntu-latest
4 env:
5 CI_JOB_NUMBER: 1
6 steps:
7 - name: Cache node_modules
8 <TO_BE_PREDICTED>
9 - name: Yarn install

10 <FOR-LATER-USE>

Listing 7: Example of instance for fine-tuning the T5 model: job completion task for GitHub
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1 unit-test-job:
2 stage: test
3 script:
4 <TO_BE_PREDICTED>

Listing 8: Example of instance for fine-tuning the T5 model: job completion task for GitLab

predict the second step, providing the model with the full implementation of the first (as if the model already
predicted it) and the following partially defined n− 2 as context; etc.

Table 1 reports the number of instances in the training, validation, and test datasets for both completion sce-
narios.

Table 1: Number of instances in the used datasets

Dataset train eval test

Pre-training 159,645 - -
Fine-tuning: NStask 108,900 13,009 13,630
Fine-tuning: JCtask 108,900 13,009 13,630

3.3.3 Fine-tuning for GitLab

Similarly to the scenarios described in detail above for GitHub, it is possible to foresee some prediction sce-
narios for GitLab. For example, Listing 8 depicts a job completion scenario for the Gitlab workflow shown in
Listing 2. In the case of GitLab, as the figure shows, the goal is to complete a script: environment in a job.

In this case, the training has been performed on jobs extracted from a dataset from a previous empirical work
on GitLab workflows [62]. The dataset consists of 5,275 worflows, from which we generated a total of 116k
training instances, i.e., jobs to be completed.

3.4 Training and Hyperparameter Tuning

All the trainings we performed have been run using a Google Colab’s 2x2, 8 cores TPU topology with a batch
size of 32 and an input and target sequence length of 1,350 and 750 tokens, respectively. Then, the models to be
released with the tool—for both GitHub and GitLab—have been trained on a Lambda-VECTOR workstation,
equipped with 3.50 GHz AMD Ryzen Threadripper PRO 3975WX 32-Cores, and four NVIDIA RTX A5000
GPUs.

3.4.1 Tokenizer Training

Since our task is characterized by the presence of natural language and human-readable data-serialization
language (i.e., YAML data), we trained a new tokenizer (i.e., a SentencePiece model [37] with vocabulary size
set to 32k word-pieces) to cope with context-specific elements. To this extent, we use the 159,645 YAML files
included in our pre-training dataset and 712,634 English sentences from the C4 dataset [51]. The latter is a
common practice in literature when developing DL-based models that are required to deal with multi-modal
data such as code and technical natural language [45, 65]. We included English sentences due to the presence
of technical English occurring within GitHub workflows.
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3.4.2 Pre-training strategies

We assess the proposed approach in four pre-training scenarios:

(i) No pre-training (T5NO−PT ), in which the model is not pre-trained, but directly fine-tuned; (ii) YAML pre-
training (T5YL), the model is pre-trained for 300k steps on a total of 159,645 YAML files including 13,638
actions from the GitHub Marketplace [3]; (iii) Natural Language Pre-training (T5NL); and (iv) Natural Lan-
guage+YAML Pre-training (T5NL+YL). For the former, we use the publicly available pre-trained model by
Raffel et al. [51], thus, we do not perform any additional pre-training steps but we directly fine-tuned their
latest available checkpoint [7]. As for the English+YAML Pre-training scenario, starting from the latest T5
public checkpoint [7], we further pre-train the model for 300k on the pre-training dataset we built, reaching
1,3M pre-training steps.

Once pre-trained, all models are fine-tuned and compared. This allows to assess the contribution to perfor-
mance (if any) brought by the different pre-training strategies.

3.4.3 Hyperparameter Tuning

Once pre-trained the models, we fine-tune the hyperparameters of the model following the same procedure
employed by Mastropaolo et al. [46]. In particular, we assessed the performance of T5 when using four
different learning rate schedulers: (i) Constant Learning Rate (C-LR): the learning rate is fixed during the
whole training; (ii) Inverse Square Root Learning Rate (ISR-LR): the learning rate decays as the inverse
square root of the training step; (iii) Slanted Triangular Learning Rate [34] (ST-LR): the learning rate first
linearly increases and then linearly decays to the starting learning rate; and (iv) Polynomial Decay Learning
Rate (PD-LR): the learning rate has a polynomial decay from an initial value to an ending value in the given
decay steps.

Having four different training scenarios, four possible learning rates, two different completion contexts, and
two versions of the fine-tuning dataset (i.e., abstracted and raw tokens), the hyperparameter tuning required
building and evaluating 64 models. We fine-tuned each model (i.e., each configuration) for 100k steps. Then,
we compute the percentage of correct predictions (i.e., cases in which the model can correctly generate a
recommendation) in the evaluation set. Table 2 reports the achieved results for each of the 64 models we
fine-tuned to find the best-performing configuration (which is reported in boldface).

3.4.4 Fine-tuning

Once identified the best learning rates to use, we fine-tuned the final models using early stopping to avoid
overfitting. In particular, we save checkpoints every 10k steps using a delta of 0.01, and a patience of 5. This
means training the model on the fine-tuning dataset and evaluating its performance on the evaluation set every
10k. The training procedure stops if a gain smaller than the delta (0.01) is observed at each 50k step interval
and the best-performing checkpoint up to that training step is selected.

3.5 Generating Predictions

After the model has been trained, we can generate predictions for the task we aim at supporting using different
decoding schema. To this end, we opted for a greedy decoding strategy [54] that generates the recommendation,
by selecting at each decoding step the token with the highest probability of appearing in a specific position.
Thus, a single prediction is generated for an input sequence.
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Table 2: Hyperparameters tuning results

No Pre-training

Raw Abstracted
NStask JCtask NStask JCtask

Constant (C-LR) 11.06% 19.24% 13.27% 26.73%
Inverse Square Root (ISQ-LR) 12.38% 21.13% 14.21% 27.86%
Slanted Triangular (ST-LR) 10.13% 20.95% 12.81% 26.65%
Polynomial Decay (PD-LR) 10.86% 19.01% 13.78% 25.57%

YAML Pre-training

Raw Abstracted
NStask JCtask NStask JCtask

Constant (C-LR) 16.26% 25.92% 19.05% 32.35%
Inverse Square Root (ISQ-LR) 15.77% 25.47% 18.93% 31.22%
Slanted Triangular (ST-LR) 14.26% 24.73% 18.05% 30.96%
Polynomial Decay (PD-LR) 16.15% 26.01% 19.24% 32.81%

English Pre-training [51]

Raw Abstracted
NStask JCtask NStask JCtask

Constant (C-LR) 18.35% 27.18% 22.25% 34.02%
Inverse Square Root (ISQ-LR) 18.36% 27.10% 21.70% 33.91%
Slanted Triangular (ST-LR) 17.67% 26.61% 21.70% 33.25%
Polynomial Decay (PD-LR) 18.46% 27.47% 22.30% 34.12%

YAML+English Pre-training

Raw Abstracted
NStask JCtask NStask JCtask

Constant (C-LR) 18.06% 27.40% 21.55% 32.91%
Inverse Square Root (ISQ-LR) 18.36% 28.17% 21.84% 34.62%
Slanted Triangular (ST-LR) 16.50% 25.90% 18.88% 32.11%
Polynomial Decay (PD-LR) 18.28% 27.33% 21.40% 33.36%

Training corpus
(CI/CD

Configuration
Scripts)

Training set
extractor

Workflow
abstraction

Tokenizer
Trainer Tokenizer

Model
Training

Prediction
Model

Figure 1: Training toolset infrastructure

4 Toolset Architecture

Fig. 1 and Fig. 2 depict the architecture of the model training toolset and of the inference API, described in the
following. The whole infrastructure has been implemented in Python.

4.1 Model training toolset

Training set extraction. The first activity to be performed is the extraction of the training data. This is
performed by the Training set extractor, which operates by searching for files with a given extension (e.g.,
.yml) in a specified directory. If specified, the tool also leverages a workflow abstraction, which replaces
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Prediction
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Tokenizer
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Workflow
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Development
Environment

Figure 2: Inference API

context-specific (unlikely to be properly predicted) code elements with idiomized tokens. This can be done for
several elements, of the workflows, namely:

• File names;
• URLs;
• Docker image names (for GitLab workflows);
• Variable names; and
• Action versions (for GitHub workflows).

The training set extraction and workflow abstraction leverage libraries such as pyyaml (for parsing YML files
into Python data structures, and getting rid of comments), json (to convert the parsed YML into JSON docu-
ments), BeautifulSoup (to prune spurious HTML elements), other than the Python standard re library to lever-
age regular expressions during the abstraction phase. The training instances are saved in a JSON file, which
can be then loaded by the Model Training component.

Tokenizer creation. To make the transformer model training working properly, it is adviceable to train a
dictionary on a dataset that reflects the lexicon on the data on which the model is trained (and then used) as
much as possible. The Tokenizer Trainer component takes as input either a plain textual file, or a directory
containing files (e.g., .yml files) to search, and creates a Tokenizer model that is then used by both the Model
Training and by the inference component. The Tokenizer Trainer is based on the sentencepiece library, which
allows to train tokenizers that can be then reused by deep learning models, and on the T5TokenizerFast from
the Hugginface’s transformers library [70].

Model Training. The Model Training component is the core of the training phase. It takes the training and
evaluation set generated by the Training set extractor, and the Tokenizer to tokenize such data before seeding
them into the deep learning model. Then, by using the hyperparameters configured by the user in a proper
configuration file (see the user manual), the component trains the model, and, at the end of the training phases,
saves it into a file, so that it can be deployed on a different machine for inference purposes. The training is based
on the Hugginface’s transformers library, and, above all, it uses the AutoModelForSeq2SeqLM component to
create a transformer model. While we have performed our empirical evaluation using the T5-small model, it
can be easily replaced with other (e.g., bigger) models by simply modifying the configuration file.
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It is important to note that the Model Training component is the only component for which it is extremely
adviceable to leverage a server equipped with one or more GPUs. In principle, the tool adapts to the availability
of GPUs or CPUs, yet it is unlikely that a CI/CD inference model could be realistically trained on CPUs.

4.2 Inference API

While we do not release a specific client for the tool (but just a running example that reads the text to be
completed from the standard input and produces the recommendation on the standard output), we provide an
Inference API, that can be simply imported and integrated in any program, e.g., a development environment.

To properly work, the Inference API requires the Tokenizer and the Prediction Model produced in the training
phase. Then, given a textual input (i.e., a workflow to be completed), it produces a recommendation API.
The Inference API can work on raw workflow source code (i.e., by performing raw code completions), or by
leveraging the Workflow abstraction component. Similarly to the Model Training, the inference API is based
on the Huggingface’s transformers [70] library, and, specifically, the AutoModelForSeq2SeqLM component.
Differently than the Model Training, the inference does not require the availability of GPUs to properly work.
Also in this case, however, the tool automatically adapts itself to the availability of GPUs, making the inference
faster.

5 Empirical Evaluation

5.1 Study Design

The goal of our study is to evaluate the proposed approach for CI/CD workflow completion. The quality fo-
cus is the approach’s ability to provide correct predictions, as well as predictions that, while differing from
the ground truth, could still be valuable for developers. We focus on the two completion scenarios previously
described: NStask (mimicking a top-down coding adopted by the developer when writing the workflow state-
ment by statement), and (ii) JCtask (helping the developer to complete a job with implementation elements
given its textual description). The context consists of the test datasets summarized in Table 1.

The study aims at answering the following research questions:

RQ1: How difficult it is to automatically complete GitHub workflows as compared to other code completion
tasks? RQ1 sheds light on the complexity of the GitHub actions completion task as compared to the classic
task of code completion. The results of RQ1 will help in interpreting our findings.

RQ2: How does the proposed approach perform with different pre-training strategies? RQ2 assesses the
impact of using different pre-training strategies when completing workflows. We experiment with four pre-
training strategies, including the lack of pre-training.

RQ3: How does the proposed approach perform for different prediction scenarios? RQ3 tests the proposed
approach in different prediction scenarios, i.e., next statement and job-level contextual completion with and
without abstraction. We also implement a statistical language model used as a baseline for comparison.

RQ4: To what extent can “wrong” recommendations provided by the proposed approach be leveraged by
developers? RQ4 gauges the extent to which “wrong” predictions (i.e., recommendations different from the
expected output) can still be useful to developers and thus worth being integrated into CI/CD pipelines after
minor changes.

5.1.1 Data Collection and Analysis

To answer RQ1 we use the token-level entropy [53] to compare the amount of information that two completion
systems (one for code and one for workflows) are required to produce when recommending either code tokens
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or workflow steps. Higher code entropy indicates a higher difficulty of the prediction task. Concerning the
task of our interest (i.e., workflow completion), we computed the token-level entropy from our dataset for all
targets (i.e., the steps that the model is expected to automatically generate).

To have a term of comparison that could help in interpreting the difficulty of the task, we also computed the
entropy of the target predictions used in a recent DL-based code completion technique proposed by Ciniselli
et al. [20] for block-level completion. This includes 636k instances in which the target prediction is a block of
code (i.e., a set of statements surrounded by curly brackets) which resemble our completion task on workflows.

We report how much information the proposed approach is asked to generate when working on both raw and
abstracted tokens. In this way, we can also assess the complexity of our task in both scenarios (i.e., with
abstraction and without abstraction) and if the abstraction helps in reducing the task complexity.

To address RQ2, we run the best-performing configuration for each pre-training strategy and scenario (NStask

and JCtask ) against the test sets (Table 1). Then, we compute the percentage of correct predictions, namely
cases in which the models can synthesize completions identical to the expected target (i.e., the code written by
developers). We further assess the quality of the predictions generated using different pre-training strategies
by relying on NLP (Natural Language Processing) metrics such as BLEU [50] and ROUGE [41].

BLEU score (Bilingual Evaluation Understudy) [50] measures how similar the candidate (predicted) and ref-
erence (oracle) texts are. Given a size n, the candidate and reference texts are broken into n-grams and the
algorithm determines how many n-grams of the candidate text appear in the reference text. The BLEU score
ranges between 0 (the sequences are completely different) and 1 (the sequences are identical). We use the
BLEU-4 variant as did in previous software engineering papers [64, 68, 59].

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is a set of metrics for evaluating both automatic
summarization of texts and machine translation techniques [41]. ROUGE metrics compare an automatically
generated summary or translation with a set of reference summaries (typically, human-produced). We use
the ROUGE-L which computes the length of the longest common subsequence between a generated and a
reference sentence.

To answer RQ3, we first select the best-performing models when supporting the completion of GitHub work-
flow with and without abstraction in both predictions scenario (NStask and JCtask ). Later, we assess the
quality of the predictions using the same set of metrics (i.e., correct predictions, BLEU, and ROUGE score)
adopted in RQ2. As there is no previous approach to compare the proposed approach against, we implemented
a baseline leveraging an n-gram model which is a specific actualization of a large class of techniques that as-
sign probabilities to sequences of tokens (i.e., Statistical-Language-Model [27]). To train such a model we use
the same set of instances used to fine-tune the proposed approach without, however, any masked part. We ex-
perimented with three different values of n (i.e., n=3, n=5, and n=7), with n − 1 being the number of tokens
on which the prediction of the next token is based upon. The best value for n (n = 3) has been found by run-
ning the models on the evaluation sets. The best model has then been run on the same test sets used for the
approach’s assessment. We do not compare the proposed approach against the n-gram model when job-level
information is provided (JCtask ), since, by construction, such a technique would not leverage the additional
knowledge provided (i.e., it only “looks” at the tokens preceding the ones to predict).

To explain how predictions are generated with the 3-gram model, let us assume we are completing a piece
of workflow having five tokens T , of which the last two are masked (M): ⟨T1, T2, T3,M4,M5⟩. We pro-
vide, as input to the model, T2 and T3 to predict M4, obtaining the model prediction P4. Then, we use T3
and P4 to predict M5 obtaining the predicted sentence ⟨T1, T2, T3, P4, P5⟩. While the proposed approach
autonomously decides when to stop predicting tokens, this is not the case for the n-gram model in our usage
scenario. We thus defined two heuristics to stop generating tokens. In the first, we stop when the n-gram model
does not generate any output token given the preceding n-1. In the second, we rely on the format in which we
represent the instances in our datasets: Each instance is a JSON object and we trained all experimented mod-
els to generate as output {target}, where the two delimiting curly brackets are the result of our JSON-like
representation. Thus, in our second heuristic, we stop generating tokens when we reach a fully-balanced (i.e.,
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valid) JSON object for the test instance to predict (i.e., the n-gram generated the “closing” curly bracket and
the latter does not close a curly bracket opened in the predicted code but the one related to the JSON).

We complement the quantitative evaluation by performing statistical tests aimed at assessing whether the pro-
posed approach produces better recommendations as compared to the baseline. We use the McNemar’s test
[47] (with is a proportion test for dependent samples) and Odds Ratios (ORs) on the correct predictions both
approaches (i.e., the proposed approach and n-grams) can generate when evaluated in the NStask comple-
tion scenarios, working with both abstracted and raw tokens. We also statistically compare the distribution
of the BLEU-4 (computed at statement level) and ROUGE, assuming a significance level of 95% and using
the Wilcoxon signed-rank test [69]. The (paired) Cliff’s Delta (d) is used as effect size [28] and it is consid-
ered: negligible for |d| < 0.10, small for 0.10 ≤ |d| < 0.33, medium for 0.33 ≤ |d| < 0.474, and large
for |d| ≥ 0.474 [28]. Due to multiple comparisons for both statistical tests, we adjust p-values using Holm’s
correction procedure [33].

As for RQ4, we perform a twofold analysis. We first assess whether the confidence of the model in the gen-
erated predictions can be used as a reliable proxy of their “quality”. T5 provides a score for each generated
prediction which represents the log-likelihood of the prediction. For example, having a log-likelihood of -2
means that the prediction has a likelihood of 0.69 (ln(x) = −2 =⇒ x = 0.69). The likelihood can be inter-
preted as the confidence of the model about the correctness of the prediction on a scale from 0.00 to 1.00 (the
higher the better). We split the predictions generated by T5 into ten buckets at steps of 0.1 (i.e., the lowest con-
fidence scenario groups the predictions having confidence between 0.0 and 0.1, the highest from 0.9 to 1.0)
and report the percentage of correct and wrong predictions within each bucket. Then, given the positive results
we achieved (as we will show, the confidence values are representative of the prediction quality), we randomly
sample 384 cases of wrong predictions having a confidence ≥0.70, with 384 representing a statistically signif-
icant sample with a confidence level of 95% and confidence interval of ±5%. Each sample has been manually
classified by two authors with one of the following labels:

1. A minor change is required to make the suggestion usable, e.g., change an option or a value;

2. The proposed approach has recommended the correct action/script command, yet with wrong argu-
ments;

3. The proposed approach has recommended the correct action/script command, yet with the wrong name;

4. The suggestion is completely wrong, i.e., the approach’s recommendation is completely different from
the ground truth.

In the labeling, the two involved authors achieved a Cohen’s kappa [21] of 0.72, indicating a substantial
agreement when measuring inter-rater reliability for categorical items. Conflicts, which occurred for 17.97%
of inspected samples, have been solved through open discussion among the authors. We report the percentage
of predictions assigned to each label and discuss qualitative examples of wrong predictions which, however,
might still be valuable for developers.

5.2 Study Results

We start by answering RQ1-RQ4 (Section 5.1), presenting the complexity of generating meaningful GitHub
actions as compared to Java statements. Then, we discuss the impact on performances of different pre-training
strategies. Later, we outline the results that the proposed approach can achieve when used for completing
workflow in a top-down manner (i.e., NStask ) by contrasting its performances against an n-gram model we
implement as a baseline. Finally, we discuss the reliability of the confidence as a proxy for the quality of the
predictions while presenting at the same time the results of our manual investigation.
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5.2.1 RQ1: How difficult it is to automatically complete GitHub workflows as compared to
other code completion tasks?

By computing the Shannon entropy [53] on the raw dataset (Table 1) we found that the proposed approach is
required to produce 3.06 bits of information when recommending a complete GitHub step. As a comparison,
predicting a block of Java code (i.e., multiple contiguous statements surrounded by curly brackets) in the
dataset by Ciniselli et al. [20] would require generating 2.07 bits of information. Thus, completing GitHub
workflows is more challenging than completing Java code. Indeed, the lower entropy for the block-level Java
completion indicates that the prediction outcome is more deterministic, i.e., it comes with less “surprise”, thus
the lower entropy. As per the abstracted version of our dataset, we obtained an entropy value of 3.05 (-0.01
than for the raw dataset). This difference looks very small, but, as observed by Hellendorn et al. [30], given
the dataset size, even minor differences in entropy can have a substantial impact on the prediction capabilities
of language models.

Answer to RQ1. Completing steps in GitHub workflows is more challenging than guessing Java code blocks.
The abstraction process described in Section 3.2 helps to slightly reduce the prediction entropy, which however
remains higher than for conventional Java code completion.

5.2.2 RQ2: How does the proposed approach perform with different pre-training strategies?

The results obtained by fine-tuning T5 using different pre-training strategies are presented in Table 3. The ta-
ble shows the model’s performance in terms of correct predictions, BLEU-4, and ROUGE-LCS (F-measure).
The best model for a given combination of task (i.e., NStask and JCtask ) and evaluation metrics is reported
in boldface. As expected, the T5NO−PT is outperformed by all pre-trained models, with 11.23% and 19.74%
correct predictions for the NStask and JCtask task, respectively, when working on raw code. When abstract-
ing the dataset, the correct predictions for the T5NO−PT model improve—14.14% for NStask and 26.96% for
JCtask —while remaining the worst configuration.

Table 3: Comparison among different pre-training strategies in terms of correct predictions, BLEU-4 and ROUGE-LCS (f-measure) computed at corpus
level

Dataset PT-Strategy Correct predictions BLEU 4 ROUGE-LCS
NStask JCtask NStask JCtask NStask JCtask

Raw

T5NO−PT 11.23% 19.74% 13.70% 13.80% 44.0% 54.75%
T5YL 15.85% 24.51% 14.50% 24.10% 50.09% 61.20%
T5NL [7] 17.47% 26.02% 23.10% 29.60% 51.78% 63.34%
T5NL+YL 17.33% 26.35% 16.40% 27.70% 51.74% 63.58%

Abstracted

T5NO−PT 14.14% 26.98% 20.40% 24.20% 46.31% 59.92%
T5YL 19.81% 32.58% 13.80% 17.0% 53.30% 64.88%
T5NL [7] 21.28% 33.84% 28.40% 25.90% 55.30% 66.51%
T5NL+YL 21.36% 34.23% 21.80% 18.40% 55.37% 66.54%

The results with pre-training (also) involving English documents (T5NL and T5NL+YL) are always the best or
the second-best in class, with performance very close to each other. Noteworthy, the usefulness of pre-training
on English text when dealing with software-related tasks has been already documented in the literature [57]
and is likely due to the vast presence of English terms in the code. Both T5NL and T5NL+YL models achieve
the best performance on the abstracted workflows, with a percentage of correct predictions of around 21% for
the NStask task and 34% for the JCtask task.

Two observations can be made here. First, in the JCtask task, T5 is more successful thanks to the additional
context provided before triggering the prediction (i.e., the skeleton of the job defined by the developer—see
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Section 3.3.2). Second, the abstraction seems to substantially boost the model’s performance, with ∼4% of
additional correct predictions for the NStask task and ∼8% in the JCtask task.

Table 4 statistically compares the correct predictions achieved using the four different pre-training strategies
for the two tasks and the two workflow representations (raw and abstract). Confirming what was said above, the
performance of T5NL and T5NL+YL is always significantly better (adjusted p-value < 0.001) compared to the
non-pre-trained models (T5NO−PT ) and to the ones pre-trained using YAML files only (T5YL), with ORs going
from 1.49 up to 4.88. The difference between T5NL and T5NL+YL is never statistically significant, showing
that the two models are almost equivalent. This is an important finding because it means that an English pre-
trained model can be simply fine-tuned to successfully accomplish the task (this is way less demanding than
retraining the model).

Table 4: Effect of different pre-training strategies on performance: results of McNemar’s test.

Dataset Task Comparison p-value OR

Raw Tokens

NStask

T5NL vs. T5NO−PT <0.001 4.88
T5NL vs. T5YL <0.001 1.95
T5NL vs. T5NL+YL 0.50 1.05
T5NL+YL vs T5YL <0.001 1.96

JCtask

T5NL vs. T5NO−PT <0.001 3.60
T5NL vs. T5YL <0.001 1.59
T5NL vs. T5NL+YL 0.10 0.88
T5NL+YL vs T5YL <0.001 1.74

Abstracted Tokens

NStask

T5NL vs. T5NO−PT <0.001 3.98
T5NL vs. T5YL <0.001 1.75
T5NL vs. T5NL+YL 0.69 0.96
T5NL+YL vs T5YL <0.001 1.88

JCtask

T5NL vs. T5NO−PT <0.001 3.78
T5NL vs. T5YL <0.001 1.49
T5NL vs. T5NL+YL 0.05 0.86
T5NL+YL vs T5YL <0.001 1.70

The analysis of the BLEU and ROUGE metrics shown in Table 3 confirms the above-described finding, i.e.,
pre-training always helps, in particular when leveraging English sentences.

Answer to RQ2. The pre-training boosts the performance of the proposed approach. Pre-training with English
text (possibly along with YAML files) helps to achieve the best performance.

In the following RQs we leverage the model pre-trained on English text and YAML files as the backbone of the
proposed approach.

Table 5: GH-WCOM vs 3-gram model when generating recommendations for the NStask

Dataset Comparison Metric p-value d OR

Raw tokens GH-WCOM vs. n-gram
Correct Predictions <0.001 - 17.69
BLEU-4 <0.001 0.51 (L) -
ROUGE-LCS <0.001 0.52 (L) -

Abstracted tokens GH-WCOM vs. n-gram
Correct Predictions <0.001 - 13.76
BLEU-4 <0.001 0.49 (L) -
ROUGE-LCS <0.001 0.50 (L) -
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Figure 3: Results achieved by the proposed approach and the n-gram model when predicting actions for NStask

5.2.3 RQ3: How does the proposed approach perform for different prediction scenarios?

Fig. 3 depicts the results achieved by the proposed approach and the best-performing n-gram model (3-gram)
in terms of correct predictions, BLEU-4 and ROUGE-LCS. Due to the technical limitations of the n-gram
(i.e., it only considers the n − 1 preceding tokens when generating a prediction), such a comparison has been
performed only for the NStask task. Table 5 reports the results of the statistical comparison between the
two in terms of adjusted p-value and OR (for correct predictions) and effect size (for BLEU and ROUGE).
On both datasets, the proposed approach achieves statistically significant better results than the baseline for
all the considered metrics. When looking at the correct predictions the gap is of ∼11% on the raw dataset
(5.10% vs 17.33%) and ∼12% on the abstracted dataset (9.28% vs 21.36%). The OR is 17.69 (raw) and
13.76 (abstract). An OR of 13.76 indicates ∼13 times higher odds of obtaining a correct prediction using the
proposed approach. Even the comparisons in terms of BLEU and ROUGE show the superiority of the proposed
approach both visually (Fig. 3) and statistically (Table 5).

The proposed approach achieves its best performance for the JCtask task, with 34.23% of correct predictions
(see Table 3), benefiting from the additional contextual information provided as input. Truly, one may question
the usefulness of an approach that fails 66% of the times. Nevertheless, as a term for comparison, the DL-
based approach by Ciniselli et al. [20] for block-level Java completion achieved ∼27% of correct predictions
and, as we showed in RQ1, completing GitHub workflows is more difficult than code completion. Also, as we
will show in RQ4, it is still possible to build a reliable recommender system on top of the proposed approach
by exploiting the confidence of its predictions.

Answer to RQ3. The proposed approach outperforms the n-gram baseline for the NStask task on all the
considered metrics. The gap in correct predictions is >11% on both the raw and the abstracted dataset. The
best performances are achieved for the JCtask task (∼34% of correct predictions) thanks to the additional
contextual information provided as input.

5.2.4 RQ4: To what extent can “wrong” recommendations provided by the proposed ap-
proach be leveraged by developers?

Fig. 4 depicts the relationship between the percentage of correct and wrong predictions when considering their
confidence. Due to space limitations, we only focus our discussion on the most challenging scenario, namely
NStask , as the findings for JCtask are similar. The orange line shows the percentage of correct predictions
within each confidence interval, e.g., 68.45% of predictions having confidence between 0.8 and 0.9 are correct
when working with the raw code. In contrast, the red line shows the percentage of wrong predictions within
each confidence bucket (e.g., 31.55% in the interval 0.8-0.9).
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Fig. 4 shows a clear relationship between the confidence of the predictions and their likelihood of being cor-
rect. For example, out of the 1,076 predictions generated with confidence >0.9 in the abstracted dataset, 959
(89.13%) are correct.

This result has an important practical implication: By setting a threshold on confidence, it would be possible
to filter out recommendations likely to be false positives and only notify the developer when the model is quite
confident about the generated prediction. As previously said, the results for the JCtask are in line with those
discussed for NStask . For example, 89.03% of the 2,908 predictions having confidence >0.9 are correct in
the abstracted dataset. A similar percentage is achieved on the raw dataset (89.13%).
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Figure 4: Correct and wrong predictions by the confidence of GH-WCOM when generating recommendations for NStask

Concerning the manual analysis of a sample of 384 completions “wrongly” predicted by the proposed approach
(i.e., the prediction did not match the expected target), we found that: (i) 41.41% (159) are actually wrong,
since the predicted code would implement a different behavior than the ground-truth; (ii) in 25.52% (98) of
the cases, the proposed approach suggested the correct action/script command yet with wrong arguments, thus
still providing “some” help to the developer; (iii) 28.13% (108) of predictions would require minor changes
(e.g., action version number); and (iv) 4.95% (19) feature a wrong or missing action name, i.e., just missing
documentation. Fig. 5 shows two concrete examples of the instances we inspected.

The left part of Fig. 5 (1) shows an example in which the whole step is correctly predicted, with the exception
of the name which is different from the expected one (Set up Python vs Python) but still meaningful.
The right part (2) depicts instead a case in which the only difference between the predicted and the expected
step is the version of a specific action to use (@v2 vs @v3). In both cases, the developer is still likely to benefit
from the prediction.

Answer to RQ4. The confidence of the predictions can serve as a trustworthy indicator of their correctness
when auto-completing GitHub workflows; ∼50% of predictions differing from the expected target but on
which the model has high confidence could still be valuable for developers.

5.2.5 Why not just using a state-of-the-art chatbot or code recommender?

Large Language Models (LLMs) have opened up new possibilities even in the field of software engineering.
One such application is GitHub Copilot [2], developed by Microsoft using the OpenAI Codex model. Copilot is
a state-of-the-art tool for recommending code completion and generation tasks. Similarly, OpenAI’s ChatGPT
[1] showed remarkable performance in generating human-like text responses to prompts, even for code-related
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name: Daily Testing 

on: 
  schedule: 
# Runs "at minute 55 past every hours” (see https://crontab.guru) 
    - cron: '5 4 * * 2,4,6' 
jobs: build: 

runs-on: ${{ matrix.os }} 

    strategy: 
      fail-fast: false 
      matrix: 
        os: [ubuntu-latest, windows-latest] 
        python-version: [3.6, 3.9] 
    steps: 
    - uses: actions/checkout@v2 
      <TO_BE_PREDICTED> 

- name: Python ${{ matrix.python-version }}  
uses: actions/setup-python@v2 
  with: 

        python-version: ${{ matrix.python-version }} 

- name: Set up Python ${{ matrix.python-version }}  
  uses: actions/setup-python@v2 
  with: 

        python-version: ${{ matrix.python-version }} 

INPUT

TARGET

PREDICTION

name: Unit Test 

on: push: 

branches: 
- "master" 

  pull_request: 
jobs: 
  unit-tests: 
    name: Unit Tests on Node ${{ matrix.node }} 
    runs-on: ubuntu-latest 
 strategy: 
      matrix: 
        node: [16, 18] 
    steps: 
      - uses: actions/checkout@v2 
      ... 
<TO_BE_PREDICTED> 

- uses: actions/cache@v3  
  id: yarn-cache  

     with: 
       path: ${{ steps.yarn-cache-dir-path.outputs.dir }} 
       key: ${{ runner.os }}-yarn-${{ 
       restore-keys: |  
                       ${{ runner.os }}-yarn- 

- uses: actions/cache@v2  
  id: yarn-cache 

     with: 
       path: ${{ steps.yarn-cache-dir-path.outputs.dir }} 
       key: ${{ runner.os }}-yarn-${{ 
       restore-keys: | 
                       ${{ runner.os }}-yarn- 

1 2

Figure 5: Examples of recommended actions extracted from the manual investigation we performed

tasks. We conducted a study to investigate the potential of these cutting-edge techniques for supporting auto-
completion in GitHub workflows.

We tested both tools on 30 instances in our test set: We randomly selected 15 workflows with the highest
confidence score for which the proposed approach provided correct predictions and 15 for which the proposed
approach failed to provide meaningful recommendations.

The results indicate that out of the 15 correctly predicted actions by the proposed approach, Copilot was able
to generate 7 correct recommendations. For 2 instances, Copilot did not suggest any token, and for 6 instances,
it provided incorrect recommendations. In contrast, when it came to the 15 instances for which the proposed
approach generated incorrect recommendations, Copilot correctly recommended only 2 of them and failed to
provide meaningful recommendations for the remaining 13.

Regarding ChatGPT, we observed that, out of the 15 instances correctly predicted by the proposed approach,
the chatbot can only suggest 4 meaningful GitHub workflow completions, while providing incorrect action
elements/scripts for the remaining 11 instances. When we tested ChatGPT on the instances where our approach
failed, we found that for 13 out of 15 workflows, the recommended actions were incorrect, and, for 2 instances,
ChatGPT was unable to respond to our query.

5.3 Threats to Validity

Construct validity. One threat is the extent to which the masking is representative of what programmers do
during their tasks [31]. We have simulated two scenarios, NStask and JCtask , representative of when de-
velopers write steps sequentially or code them after sketching their documentation. To provide a proxy for
the “difficulty” of the prediction task (and compare with other completion tasks), we used a consolidated met-
ric used to assess the difficulty of an IR task i.e., Shannon’s entropy [53], already used in the past for similar
purposes [48, 8, 19]. To evaluate the quality of the predictions, we used consolidated measures for code com-
pletion tasks, namely percentage of correct predictions, BLEU-4 [50, 52], and ROUGE score. Furthermore,
we complemented such measures with a qualitative analysis of a statistically significant sample of wrong pre-
dictions having high confidence.
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Internal validity. One key issue for DL models is the hyperparameter tuning, which we detailed in Sec-
tion 3.3.2. We are aware that we could not consider all possible (combinations of) values for that. Also, the
performances of a T5 model could largely depend on how it has been pre-trained. To mitigate this threat, we
have shown how the proposed approach works by leveraging different pre-trainings.

Conclusion validity. To address the RQs, wherever appropriate we use suitable statistical tests (McNemar’s
test and Wilcoxon signed rank test) as well as effect size measures (OR and Cliff’s delta). In the qualitative
analysis of RQ4, we computed and reported Cohen’s kappa inter-rater agreement.

External validity. Our work shows how the proposed approach performs with a T5 small model. However,
it can be applied as is with larger transformer models (e.g., GPT-3 [12] or GPT-4 [49]). Furthermore, while
we fully experimented the proposed approach in the context of GitHub workflow completion, with proper
training/fine-tuning, it is important ot note that:

1. As explained in Section 3.3.3 and as will also be detailed in the user manual of Section 6, the tool has
been implemented to also support GitLab workflows;

2. The proposed approach could be applied to CI/CD pipelines developed with other technologies, e.g.,
Jenkins;

3. In principle, the proposed approach can be used, with a proper training, to support the automated com-
pletion of other types of YAML files, e.g., various forms of configuration files.

6 User Manual

In the following, we describe, one, by one, the syntax and the configuration files for the various components
of the proposed toolset.

6.1 Tool Installation

The tool can be installed using the PyPi Python Installation Utility, by running the following command:

pip install git+https://cosmos-devops.cloudlab.zhaw.ch
/cosmos-devops/cosmos-tools/bad-practice-
resolution-recommender.git#egg=ci-completion

Note: in this installation instruction we refer to the installation of version 1.0.0, but the same instructions apply
for any released version.

6.2 Tokenizer Creator

Usage:

CreateTokenizer.py [-h] (-f FILENAME | -d DIRNAME) -o OUTDIR

options:

• -h, –help show this help message and exit.
• -f FILENAME, -filename FILENAME File with the dictionary corpus.
• -d DIRNAME, -dirname DIRNAME Directory where to search for files.
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• -o OUTDIR, -outdir OUTDIR Directory where to store the resulting tokenizer.

The Tokenizer Creator can be configured through a configuration file named tokenizerConfig.json,
where the following settings are specified:

• extensions: list of extensions for files to be indexed when creating the vocabulary (if using the -d
option).

• temp file: temporary file used when creating the dictionary (will deleted at the end).
• tokenizer prefix: name of the dictionary model files (the tokenizer will produce a .model and a .vocab

file, other than a directory with the pretrained tokenizer, than needs to be copied where the Model Trainer
or the Inference APIs are used).

• special tokens: list of special tokens used in the abstraction phases. (usually to be left unchanged as it
depends on the implementation of the abstractor).

• vocab size: maximum size of the vocabulary.
• max sentence length: maximum length of a sentence to be parsed.

6.3 Training Set Creator

Usage:

CreateTrainingSet.py [-h] [-t github,gitlab] -d DIRNAME -o
OUTFILE [-a]

options:

• -h, -help show this help message and exit
• -t {github,gitlab}, -type {github,gitlab} Workflow type (gitlab or github)
• -d DIRNAME, -dirname DIRNAME Directory where to search for files for creating the training

set
• -o OUTFILE, -outfile OUTFILE Output training set file
• -a, -abstraction Enables the workflow abstraction

The Training Set Creator can be configured through a configuration file named
trainingCreatorConfig.json, where the following settings are specified:

• extensions: list of file extension to search for when creating the training set;
• max file size: maximum file size (in lines, longer will be skipped);
• raw dump : if enabled, the file content will not be represented in JSON format;
• extended context: if enabled, all lines preceeding a job to complete will constitute the context, otherwise,

only the parent job will;
• input label: label used in the training file to name the input field (must be the same for the training

script);
• target label: label used in the training file to name the predicted text field (must be the same for the

training script);
• github steps: list of GitHub environments for which the completion will be enabled (e.g., steps);
• gitlab steps: list of GitLab environments for which the completion will be enabled (e.g., script);
• min target tokens": minimum size (in tokens) of the prediction field (if less, the training entry will be

skipped).
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6.4 Model Training

Usage:

TrainModel.py [-h] -f FILENAME -m MODELNAME

options:

• -h, -help show this help message and exit
• -f FILENAME, -filename FILENAME File with the training set corpus
• -m MODELNAME, -modelname MODELNAME File where the model is saved

The Model Training script can be configured through a configuration file named trainConfig.json,
where the following settings are specified:

• validation percentage: splitting percentage for the validation set;
• tokenizer: directory where to load the tokenizer;
• input max length: maximum length (in tokens) of the input (longer will be truncated);
• output max length: maximum length (in tokens) of the output ground truth (longer will be truncated);
• context field name: label used in the training file to name the input field (must be the same for the

training creator script);
• target field name: label used in the training file to name the predicted text field (must be the same for

the training creator script);
• prompt: prompt text used to train the predictor model;
• model: base pretrained model to use;
• output dir: directory where to store the checkpoints;
• learning rate: model learning rate (for T5, do not change it);
• weight decay: weight decay during training;
• batch size: batch size of the neural network training;
• save total limit: maximum number of checkpoints to save (older ones will be removed);
• training steps: number of steps in the training phase;
• metric for best model: metric used to evaluate the best model during training;
• patience: early stopping patience (training will stop if the metric does not improves for the specified

number of epochs).

6.5 Abstractor

The Abstractor module is contained in a Python file named Preprocessing.py. Both the Training Set
Creator and the Inference API depend on it. The Abstractor has its configuration file named , which simply
specifies the name of files that contain information necessary to the Abstractor itself. These files must be
brought with the Abstractor e.g., when deploying the Inference API of a different machine.

Specifically, the configuration files contains the following fields:

• domain names: known domain names used to recognize URLs;
• file extensions: known file extensions used in the heuristic to recognize file names;
• known commands: known commands that are invoked from the current path (./), e.g., Maven or Gradle

wrappers.
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6.6 Inference API

As for the Inference, we release a Python API that can be deployed on any machine and possibly integrated
in development environments/tools. The API will be used as follows. All a client has to do is to import the
YmlInference class with the code:

from YMLInference import YmlInference

and then use the following methods:

1. Constructor: YmlInference(abstracting, jsonInput): where the parameters are Boolean
values indicating whether (1) the input needs to be abstracted by the Abstractor (needed if we use an
Abstracted inference model), and (2) if the input is already in JSON. Both parameters are False by
default.

2. Once created an instance of the YmlInference class, one can use one of the following methods
to generate the prediction:

• generateYmlRaw(text): performs the inference given the input text and returns the gener-
ated text as is, without post-processing it (the user has to interpret it);

• generateYml(text): performs the inference given the input text and attempts to produce a
valid YML as output.

Note that both generateYmlRaw and generateYml produce a list of outputs, depending on the inference
API configuration (see below).

The Inference API is configured through a configuration file named inferenceConfig.json, where the
user can specify the following parameters:

• base model: based model for the inference (must be the same as of the training);
• tokenizer: directory containing the tokenizer (must be the same as of the training);
• modelFile: model file name
• prompt: prompt for the model (must be the same as of the training);
• max new tokens: maximum number of tokens to generate during the inference;
• num beams: beam size during the inference (more is better but also slower)
• num return sequences: number of results to return (must be ≤ num beams, if not, it will be set equal to

num beams).

6.7 Simple Inference Client

While the inference is distributed as an API, we release a simple inference client that reads its input from a file
or from the standard input. Its usage is described in the following.

Usage:

InferenceClient.py [-h] [-a] [-j] [-i INPUT]

options:

• -h, -help show this help message and exit;
• -a, -abstract Abstracts the input text before inference;
• -j, -json Takes JSON input directly;
• -i INPUT, -input INPUT Input file (default <STDIN>).
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6.8 Restoring Configuration files

The script CreateConfigFiles.py generates/restores the JSON configuration files for the various com-
ponents of the tool to their default factory values.

6.9 HOWTO: Creating a Training Model

To create a training model the steps, one should start from a directory containing YAML files (e.g., GitLab or
GitHub CI/CD workflow configuration scripts). Then, the steps to be followed are:

1. (optional) given the files, create a Tokenizer. Otherwise, the one distribute with the tool might just be
good enough;

2. Create a training set from the files. The user may decide to create an abstracted training set or a raw
one, depending on the type of inference to perform;

3. Perform the training. This step likely requires GPUs.

6.10 HOWTO: Inference

Once a training model is available, the following items must be deployed (i.e., simply copied) on the inference
machine:

• Inference API script (YMLInference.py) and Abstractor script (Preprocessing.py), along
with their configuration files (inferenceConfig.json and preprocessingConfig.json)
and the files needed by the Abstractor (see above);

• the Tokenizer (entire directory). It must be the same used during the training, and its path must be
specified in the inferenceConfig.json;

• the model file produced by the training (its name must be specified in the inferenceConfig.json);
• (optional) the Inference Client, if one does not want to develop their own client.

Once the aforementioned files are deployed, the inference can be performed by following the instructions
provided for the Inference APIs or for the Inference Client.

7 Related Work

CI/CD workflow auto-completion has commonalities with automated code completion. In the following, we
discuss related literature about this task, emphasizing in particular (i) task-oriented models, and (ii) pre-trained
models.

although it also has some specific peculiarities. In the following, we discuss some relevant related work about
DL-based techniques for completing code (we do not discuss other techniques that have been outperformed
by the latter). In this regard, we present information about two primary types of DL-based methods utilized
in code completion: (i) task-oriented models and (ii) pre-trained models. While the former are specifically
designed to facilitate code completion tasks, the latter are generally more versatile, leveraging the pre-training
process to gain fundamental knowledge that can be subsequently applied to support code completion. For
additional information regarding the applications of DL to software engineering, please refer to the systematic
literature review conducted by Watson et al. [66].
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7.1 Task-Oriented models for Completing Code

Li et al. [38] introduce a pointer mixture network that improves the accuracy of predicting Out-of-Vocabulary
(OoV) words in code completion. The pointer mixture network can determine whether to create a word within
the vocabulary using an RNN component or reconstruct an OoV word based on the local context using a pointer
component. The effectiveness of the attention mechanism and pointer mixture network in code completion is
shown through experiments on two established datasets.

Alon et al. [9] propose a language-agnostic approach called Structural Language Model for code completion,
which uses the syntax to model a code snippet as a tree. Their model predicts the next token in a partial
expression represented by an AST, achieving an exact match accuracy of 18.04%.

Chen et al. [13] address the code completion task by focusing on the recommendation of APIs. Their approach
employs a DL technique integrating structural and textual code information with the use of an API context
graph and code token network. Their model outperforms existing graph-based statistical and tree-based DL
methods for API recommendation.

Avishkar et al. [11] propose a neural language model suggesting code in Python using a sparse pointer network
to capture long-range relationships among identifiers.

Aye and Kaiser [10] introduce a new language model that predicts the next top-k tokens while taking into
account real-world constraints, including prediction latency, model size and memory usage, and suggestion
validity. Svyatkovskiy et al. [56] propose a learning-to-rank approach for code completion, which is cheaper
in terms of memory footprint than generative models.

In a separate work, Watson et al. [68] addressed an issue related to code completion by using a sequence-
to-sequence model to suggest assert statements for a given Java test case. Their approach achieved a top-1
accuracy of 31% in generating a particular type of code statement.

7.2 Pre-trained Models for Code Completion

Svyatkovskiy et al. [55] introduce IntelliCode, a multilingual code completion tool that predicts sequences of
arbitrary token types using subtokens to overcome the OoV problem [58].

Liu et al. [42] propose a pre-trained Transformer model incorporating two tasks: (i) program understanding
and (ii) code generation. The model has been fine-tuned to predict the next code token to write.

Kim et al. [36] use the Transformer architecture by incorporating the syntactic structure of the code to further
advance the state-of-the-art next-token prediction by margins ranging from 14% to 18% when compared to
previous techniques.

Ciniselli et al. [20] examine the effectiveness of Transformer-based models, such as T5 and RoBERTa, in
completing code with varying degrees of complexity. T5 results to be the best model for recommending code
completion across different complexities, with an accuracy of ∼29% when predicting entire code blocks.

Our work shares with the aforementioned ones, and in particular with the one by Ciniselli et al. [20], the
use of transformer architectures, and T5 in particular. That being said, GitHub workflow completion has its
peculiarities and challenges. As we have shown in RQ1, it is intrinsically more challenging (i.e., the text to
be completed has higher entropy) than source code completion, even when performing abstractions. Second,
unlike many source code artifacts, a GitHub workflow features several elements that are extremely project-
specific, e.g., dependencies, configuration files, hardware and software configurations to be tested. As detailed
in Section 3.2, this has required a complex abstraction process. Last, but not least, the completion scenarios are
different from the ones for the source code. For the former one mainly wants to generate the next statement,
block, or code construct. For the latter, elements to generate are either job steps (combinations of natural
language descriptions, actions, and script calls) or the implementation of a job specified in terms of its names.
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Large Language Models (LLMs) such as GPT-3 [12] or GPT-4 [49] have propelled code completion techniques
to new heights. GitHub Copilot [16] is a prime example of this advancement in the field, having undergone fine-
tuning using open-source code from GitHub and exhibiting remarkable proficiency in numerous code-related
tasks. On a similar note, OpenAI in November 2022 released ChatGPT [1], which showcased remarkable
abilities even when dealing with code-related tasks.

While we did not use LLMs for feasibility and parsimony reasons, we provide some evidence showing that
GitHub workflow completion is a challenging task for them as well. Also, GH-WCOM can be easily evolved
to replace T5 with LLMs.

Kanade et al. [35] also demonstrated how code embeddings can assist with code-related tasks, such as identi-
fying variable misuse and repair, specifically in the context of code completion for a single token.

8 Conclusion

In this deliverable described an approach and its toolkit implementation for automatically completing CI/CD
pipeline scripts. The approach is based on T5 [51] pre-trained models to automatically recommend workflow
completions in different scenarios, i.e., predicting the next step (NStask ), or completing a workflow job. The
tool has been implemented to support the completion of both GitHub and GitLab workflows.

Our empirical analysis conducted on GitHub data found that (i) recommending GitHub workflow completion
is more difficult than recommending code blocks, (ii) leveraging a pre-training involving English text (possibly
complemented by YAML files) always helps, (iii) the performance of best models range from 17.47% (NStask

task) and 26.35% (JCtask task) for raw correct predictions, to 21.36% (NStask ) and 34.23% (JCtask ) for
abstracted correct predictions; and (iv) the model confidence correlates with the likelihood of generating a
correct prediction.

Last, but not least, despite the recent advances in text and code generation thanks to LLMs [2, 1], the proposed
still shows itself to be competitive for context-sensitive completion tasks.
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