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Executive Summary

This report describes the first steps in the development of a framework for monitoring CPS quality attributes
(QAs) that may change/degrade over the software evolution, with the purpose of monitoring CPS behavioral
states, detecting/predicting CPS degradation forms, and recommending, when possible, system recovery and
(micro-) fixes. The monitoring and fixing of QAs include also the assessment of the CPS vulnerability prone-
ness (e.g., predicting the security attack surface of CPS) [154], a topic not yet investigated in the literature.

COSMOS targeted innovation is to extend traditional DevOps pipelines with monitoring CPS states and QAs
from DevOps and CPS assets (e.g., simulation environments, sensors, etc.), to focus on CPS specific degrada-
tion forms, thus supporting their automated monitoring, prediction, and fixing.

From a high-level point of view, there is still limited research in the state-of-the-art concerning the automated
monitoring, prediction, and fixing of CPS states and QAs from DevOps and CPS assets. Such investigations are
critical to shed some light on the types of behavioral states and QAs that affect or characterize CPSs and how
they can potentially lead to unsafe behaviors or CPS degradation forms in different CPS domains. Given such
a background, this report begins by describing the current state-of-the-art and identified gaps in the literature
concerning the following relevant research topics:

• Background information on current state of development and evolution of CPSs;

• Background information on current state of development and evolution of specific CPSs, close to
COSMOS use case partners (AICAS and GMV) such as Unmanned Aerial Vehicles and Self-driving
cars;

• Summary of main general research on monitoring CPS states;

• Discussion of background information on current state of monitoring of CPS states in the context of
two specific CPSs, close to COSMOS use case partners (AICAS and GMV) such as Unmanned Aerial
Vehicles and Self-driving cars;

• Focused related studies on flaky tests analysis, identification, and root-cause analysis;

• Focused related studies on monitoring and propagation of CPS Changes.

• Focused related studies on monitoring and propagation of vulnerabilities.

The deliverable discusses the general architecture of COSMOS Component for Quality Assessment and moni-
toring of CPS. Then, it discusses the ongoing implementation of developed prototypes. Finally, the deliverable
outlines next steps and future work.
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1 Introduction

This report describes the first steps in the development of a framework for monitoring CPS quality attributes
(QAs) that may change/degrade over the software evolution, with the purpose of monitoring CPS behavioral
states, detecting/predicting CPS degradation forms, and recommending, when possible, system recovery and
(micro-) fixes. The monitoring and fixing of QAs include also the assessment of the CPS vulnerability prone-
ness (e.g., predicting the security attack surface of CPS) [154], a topic not yet investigated in the literature.

COSMOS targeted innovation is to extend traditional DevOps pipelines with monitoring CPS states and QAs
from DevOps and CPS assets (e.g., simulation environments, sensors, etc.), to focus on CPS specific degrada-
tion forms, thus supporting their automated monitoring, prediction, and fixing.

From a high-level point of view, there is still limited research in the state-of-the-art concerning the automated
monitoring, prediction, and fixing of CPS states and QAs from DevOps and CPS assets. Such investigations are
critical to shed some light on the types of behavioral states and QAs that affect or characterize CPSs and how
they can potentially lead to unsafe behaviors or CPS degradation forms in different CPS domains. Given such
a background, this report begins by describing the current state-of-the-art and identified gaps in the literature
concerning the following relevant research topics:

• Background information on current state of development and evolution of CPSs (Section 2.1);

• Background information on current state of development and evolution of specific CPSs, close to
COSMOS use case partners (AICAS and GMV) such as Unmanned Aerial Vehicles and Self-driving
cars (Section 2.1.1 and Section 2.1.2);

• Summary of main general research on monitoring CPS states (Section 2.2);

• Discussion of background information on current state of monitoring of CPS states in the context of
two specific CPSs, close to COSMOS use case partners (AICAS and GMV) such as Unmanned Aerial
Vehicles and Self-driving cars (Section 2.2.1);

• Focused related studies on flaky tests analysis, identification, and root-cause analysis (Section 2.3);

• Focused related studies on monitoring and propagation of CPS Changes (Section 2.4).

• Focused related studies on monitoring and propagation of vulnerabilities (Section 2.5).

The deliverable discusses the general architecture of COSMOS Component for quality assessment and moni-
toring of CPS (Section 3.1). Then, it discusses the ongoing implementation of developed prototypes:

• The prototype for Monitoring UAV states, along with the architecture and/or preliminary results (Section
3.2). This task is an essential step toward the analysis of types of UAV States, relevant also for the GMV
use case.

• The prototype for Monitoring SDC states, along with the architecture and/or preliminary results (Section
3.3). This task is an essential step toward the analysis of types of SDC States, relevant also for the
AICAS use case.

• The prototype for flaky tests analysis and identification for UAVs, along with preliminary results (Sec-
tion 4). This task is an essential step toward the analysis of CPS flaky tests, an important QA of UAV
States, relevant also for the GMV use case.

• The prototype for flaky tests analysis and identification for SDCs, along with preliminary results (Sec-
tion 5). This task is an essential step toward the analysis of CPS flaky tests, an important QA of SDC
States, relevant also for the AICAS use case.

Finally, the deliverable outlines next steps and future work.
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2 Background and Related work

This section overviews the current state-of-the-art and identified gaps in the literature, providing important
background information for better contextualizing the innovations targeted by COSMOS.

2.1 Development of Cyber-physical Systems

Empirical studies have shown that CPSs are more difficult and expensive to test and integrate than traditional
software systems [72, 165]. Common reasons for this are that the final version of the hardware is often not
available, and the integration of hardware components requires a high, and error-prone manual effort. For these
reasons, recent studies have investigated the challenges of CPS development and identified that an effective
evolution of CPSs requires more flexible development and verification approaches, integrating Model-in-the-
Loop (MiL), Software-in-the-Loop (SiL), and Hardware-in-the-Loop (HiL) paradigms [4].

Giraldo et al. [65] conducted a literature review on CPS research topics, finding that they can be categorized
into security, privacy, defense, or domain-specific. Also, their literature review shows that there is a lack of
research and tools for supporting CPS development and evolution. A follow-up study by Törngren and Sell-
gren [165] discusses how CPS engineering deals with the inner complexity of CPSs design and the challenges
that arise from the environments in which the CPSs operate. According to Törngren and Sellgren, while semi-
automated integration happens through software, there are distinguishing characteristics between software and
physical systems that make it hard co-designing hardware and software. Those characteristics entail the us-
age of different approaches, techniques, abstractions, platforms, faults & failure modes, and development
practices [165]. Törngren and Sellgren conclude that CPS development and testing need rapid prototyping,
code/test generation, and various testing phases [150] encapsulating model-in-the-loop (MiL), software-in-
the-loop (SiL), and hardware-in-the-loop (HiL) activities to effectively identify bugs in CPSs.

Understanding the nature of CPS safe and unsafe states as well as QAs of CPSs constitutes key areas for
supporting the development (e.g., by conceiving monitoring and prevention techniques in case of harmful CPS
behaviors), and evolution (e.g., predicting and fixing unsafe states) of CPSs.

2.1.1 Development of Unmanned Aerial Vehicles

With the boost of CPS in both academia and industry over the past decade, we have witnessed impressive
advancements in the technology available in healthcare, avionics, automotive, railway, and the robotics sectors
[173, 33]. Unmanned Aerial Vehicles (UAVs) [181], e.g., drones equipped with onboard cameras and sensors,
have already demonstrated that autonomous flights are possible in real environments. This sparked great
interest in a plethora of application scenarios, with crop monitoring [30], surveillance [13], infrastructure
maintenance [136], medical and food delivery [40], military [70], search and rescue in disaster areas [37]
representing only some of the relevant applications of UAVs (either autonomous or teleoperated). By 2027,
the global UAV market size is projected to reach 25.13 billion USD, with a compound annual growth rate of
12.23% compared to 10.72 billion USD in 2019 [55]. As the autonomous flying robots and the consumer UAV
market flourish, safe collocated human-UAV interactions are becoming increasingly important [176].

Remotely controlled air crafts have been in development since the first world war, where the early research
and development was around the use of unmanned aircraft as weapons of war [92]. During the early stages of
the UAV evolution, there were two main strategies for vehicles control: (1) Remote Piloted Vehicles (RPVs)
and (2) development of UAVs capable of flying pre-programmed trajectories either as an offensive tool or
for Intelligence, surveillance and reconnaissance [92]. Due to the tactical needs of the United States Air
Force (USAF), there was a rapid research and development in the late 1970s that would drastically increase
the capability of UAVs [157]. However, it was only in the 1980s that thanks to the increased availability of
lightweight processors, sensor systems and GPS, UAVs were be able to perform complex tasks [51]. From
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the mid-1980s, the research and development of aerial robots increased significantly, powered by the wide
availability of small-scale helicopters available also to of academics and universities[51, 157].

Figure 1: Typical robotic cycle with core competencies [131]

UAV Architecture The overall mechanism of a UAV is based on the so-called Robotic Cycle (Figure 1).
The robotic cycle encompasses the underlying architecture of a robotic system and defines the relationship
between a robot’s main components (hardware and software) and their interaction with the surrounding envi-
ronment [87]. The hardware comprises the robot sensors used to detect changes or events in the surrounding
environment and the actuators, which are parts that act on the environment [87].

Sensors. There exists a vast amount of sensors which UAVs can leverage, but the minimum required sensor
is the Inertial Measuring Unit (IMU). The IMU contains two sensors, a 3-axis gyroscope which measures
the UAVs rotational motion and a 3-axis accelerometer [14], which measures the UAV’s acceleration [51].
IMU is often accompanied by other sensors such as GPS, barometer and magnetometer in order to reduce the
positional error of the UAV by combining all the sensors measurements in order to reduce the errors caused by
sensor noise and inaccuracies. On more state of the art implementations, the UAV sensors include also optical
flow sensors [115], LIDAR [85] and video cameras [109], all of which aim to improve the UAV’s ability to
track its movements and perform obstacle recognition.

Actuators.The actuators of the UAV are components which change the movement of air around them in order
to create a force on the UAV, which leads to it moving in a certain way. In case of a quadcopter, there are 4
propellers which are fixed to a motor, and by varying the control signal to each motor, it is possible to control
the quadcopter’s rotation and movement in any direction. Typically, UAVs have 6 degrees of freedom (DOFs),
as illustrated in Figure 3. Three transitional movements: longitudinal (along x-axis), lateral (along y-axis), and
vertical (along z-axis) and three complementary rotational movements along each axis: roll (around x-axis),
pitch (around y-axis) and yaw (along z-axis). The rotational movements express the UAV’s attitude.

The software is traditionally decomposed into three sequentially placed primitives [120]; Perception, Planning,
and Control [87]. The information gathered by the system’s sensors is fed to the perception layer, which
elaborates the information and makes the processed data available to the planning layer. The planning layer
uses the provided information in order to compute a path strategy which the control layer has to actuate. The
control layer is responsible for processing the action into signals for the actuators (e.g. rotors) with in turn act
on the robot’s actuators. This sequence of interaction is also referred as the sense-plan-act paradigm and is
repeated at high frequency in order to keep the UAV stable [87, 51].
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Figure 2: UAV State estimation
Figure 3: Generic quad-copter with coordinate overlay

The multi-rotor helicopter type, also referred to as multicopters [63, 125], is highly adaptable and only needs
a limited space to take off and land thanks to its Vertical Takeoff and Landing (VTOL) ability. Therefore, this
category of UAVs is one of the most widely researched.

UAV Firmware. Support for UAV developers has steadily increased and matured over the years with open
access projects for the software (i.e., firmware) and hardware (e.g., flight controller and sensors). Well-known
examples are Ardupilot [11] and PX4 [117] (autopilot software systems) and Pixhawk [134] (open standards
for UAV hardware). The UAV’s firmware is a software that is loaded into the drone micro-controller in order
to provide the control on the UAV’s hardware [60, 51].

PX4 is a powerful open-source flight control software for UAV[118]. It is widely used both in academia and
commercially as it provides a flexible toolset for UAV development and applications [116]. The first advan-
tage of PX4, is that it provides a standardized API to interface with the UAV and Simulated environment. A
second advantage is that it provides a low-latency, high-performance embedded solution for UAV control and
interaction. Finally, PX4 can also be used as a Software In the Loop (SIL) tool together with the Robot Operat-
ing System (ROS) for small aerial vehicles, facilitating rapid development in a safe and simulated environment
[118].

The firmware contains both the Flight Stack and the middleware. As depicted in Figure 4, the unprocessed
signals from UAV’s sensor are passed to the Drivers and sensor hub, which contain the protocols needed to read
the data (e.g. I2C, UAVCAN) and translate it into usable uORB messages. These messages are then passed
to the flight control block, which contains the UAV state estimator. This estimation then propagates into three
different components, which, based on the input from the ground control and the estimated state, compute the
successive movements the UAV should perform. In particular, the Navigator is responsible for generating the
position set-points, which the position controller transforms into attitude set-points[35]. Finally, the attitude
and rate controller transform the set-points into control signals which the output driver can send to the actuators
and servos the UAV possesses [35]. With the PX4 firmware, this cycle takes a couple of milliseconds from
start to finish; the reaction time of the controlled UAV is, therefore, sufficiently quick for the UAV to respond
to the input changes [141, 35].

Within PX4 there are three main components used in our prototype, the state estimation, the flight control and
the motion control. The flight control is module responsible for the position and attitude control of the UAV,
while the motion control is responsible for translating the output of the flight control into values which the
UAV’s actuators can use (i.e. Motors, Gimbal, Servos)[175, 35].

PX4 provides a well-documented API which enhances its ease of use in a SIL setting by developing it with
simulations as a core capability of it [36]. In addition, this API enables the ability to offload the control inputs
to be sent by another software instead of using other input devices, such as Joystick or gamepads [118, 36].
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Figure 4: UAV Firmware components [35]

The API also opens up the possibility to design and implement the ground controller and test it on a proven
test ground, which allows to test rapidly and prototype new firmware and control loops [118, 36].

UAV Simulation. Gazebo is an open-source software that provides a dynamic model of UAV, sensor model and
3D visualisation [93]. It was developed as a response to the increased use of outdoor robotics, and the need to
simulate outdoor environments with realistic sensor feedback [93]. The architecture of Gazebo is comprised
of three overarching components. The first component is the environment which models environmental factors
such as gravity, or lighting [93]. The second components are the models, which are all physical objects which
have at least one body and are connected with joints; such elements could be obstacles or other entities placed
in the environment [93]. The third and last component are the robots models, which are physical objects with
the added capability of sensors. In this thesis robot models are the UAVs.

Gazebo provides a well-designed user interface that offers easy user interaction with the simulation, as it does
provide a rendered scene of what is being simulated [93]. While this approach is catered towards a human
supervision or interaction approach, the simulator also provides an external interface that can be leveraged by
software such as PX4 to send and receive data from the sensors or manipulate the environment. This lends the
simulation to be run without the need of human interaction in combination with a third-party such as PX4 in a
SITL setting in order to test and evaluate the UAV performance[35, 93, 57].

Over the past decade, many researchers have focused on improving multicopters’ and UAVs’ abilities by
enhancing each of their components and implementing rigorous testing in simulation and real-world environ-
ments. Now, thanks to the increased availability of small and powerful computers and the increased capabilities
of sensor technologies, UAVs can perceive small changes in the environment and react within a fraction of a
second [54, 48]. Novel approaches to UAV flight controllers leverage these computational developments by
removing the sequential hierarchy of the robotic cycle and instead use machine learning to integrate the cy-
cle’s phases into hybrid processes or end-to-end approaches[107, 51]. One of the grounding elements used
to advance control systems rapidly is using computational models, and simulators in a Software In the Loop
(SIL) configuration [26]. SIL are not only used to evaluate control algorithms but can be leveraged together
with machine learning models to produce and rapidly optimise the control algorithms for the UAVs [64, 107].
This approach produces control systems capable of sensing and reacting within a hundredth of a second and
out-compete human experts [107].

The reduced latency between the perception and the control phase, make the UAVs adapt faster to the environ-
ment and help the UAV moving in an unknown scenario safely and at high speeds [107]. The safety aspect of
UAVs is critical and widely studied, as UAVs has fast spinning blades and can move at great speeds they can
damage objects by crashing into them and hurt people [161]. The rapid development and deployment of new
UAV systems able to perform tasks autonomously, has also lead to an increase to a rise in accidents in the wild.
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In 2019 a UAV belonging to a pilot program of the Swiss Postal service had an uncontrolled crash near a group
of children, launching an investigation into the accident and immediate pause on the pilot program [135]. The
Swiss delivery program could only be restarted once all parties involved, including the Swiss Federal Office
of Civil Aviation, would be satisfied with the mitigation that the UAV producer would apply to the system
[135]. Another crash, which happened in 2017 in Japan, led to the injury of 6 people when a UAV crashed
into a crowd, which it was hovering over as a demonstration of robotic technologies [79]. Such crashes lead
to increased scrutiny by aviation authorities around the globe and the worsening of public opinion on UAV
technologies.

2.1.2 Development of Self-driving cars

Among various and emerging CPS application domains, the usage of self-driving cars (SDCs) in transportation
is expected to impact our society profoundly. Human errors cause more than 90% of driving accidents (e.g.,
driving while under the influence of alcohol, fatigue, and other distractions) [82]; hence, automated driving
systems such as SDCs have the potential to reduce such errors and eliminate most accidents. However, the
recent fatal crashes involving self-driving cars suggest that the advertised large-scale adoption of SDCs appears
optimistic and premature [12, 68]. One of the main factors limiting the usage of autonomous driving solutions
is the lack of adequate testing. Consequently, the risk of releasing SDCs equipped with defective software,
which might become erratic and lead to fatal crashes, is still quite high [68].

Testing automation is crucial for ensuring the safety and reliability of SDCs [82, 90]. However, most developers
rely on human-written test cases (at unit and system levels) to assess SDCs’ behavior. This practice has several
limitations and drawbacks: (i) limited possibility to repeat tests under the same conditions [90]; (ii) difficulty
in testing SDCs in representative and safety-critical scenarios [68, 159, 77]; (iii) difficulty in assessing SDC’s
behavior in different environments and execution conditions [82].

As a consequence, SDCs practitioners in the field are facing a fundamental development challenge: observ-
ability, testability, and predictability of the behavior of SDCs are highly limited [68, 159, 77]. Thus, new
testing practices and tools are needed to find SDC faults earlier during development and, eventually, support
the widespread usage of autonomous driving.

The utilization of simulation environments can potentially address several of the challenges mentioned
above [16, 28, 43, 3] since simulation-based testing is more efficient (i.e., have smaller testing costs) than
and can be as effective as traditional field operational testing [7, 43]. Additionally, simulation-based test-
ing can support and complement well-established hardware-in-the-loop (HiL), model-in-the-loop (MiL), and
software-in-the-loop (SiL) development strategies. Consequently, an increasingly large number of commer-
cial and open-source simulation environments have been delivered to the market to conduct testing in the
autonomous driving domain [43, 16] as well as other CPS domains [149].

Levels of Automation. Yoganandhan et al. [180] propose five levels of automation:

1. Driver Support

The driver of the vehicle gets support from some intelligent systems. E.g., the driver might get a noti-
fication that the car in front is too close. Another example is the parking of the vehicle. The driver can
get visual and/or audio signals if the car is too close to a wall or another parked car.

2. Limited Cruise Control

The vehicle is able to steer itself to a certain degree without a human-based interaction. E.g., the
automatic lane-keeping system of a car that lets the vehicle cruise along a simple lane without manual
steering of the driver.

3. Conditional Automation

On this level the vehicle only provides an interface for human. The idea is that the driver is only
interacting with the vehicle if it is really needed.
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4. High-level Automation

Compared to the third level, this level provides no human interface for steering the vehicle. This is more
abstract than the following, which targets the goal of autonomous driving.

5. Fully Autonomous Vehicle

The vehicle is fully autonomous and no human is required to interact with it. It also has no interface for
it.

In Figure 5 the lidar and radar sensors provide data input for the autonomous driving system as described in
Figure 6. These sensors are mainly meant to identify the distance to other objects, i.e., other cars. Furthermore,
camera sensors give important data for the lane-keeping system since the lanes must be identified visually.

Data is processed in order to give the actuator of the system the right inputs. The output of the pipeline are the
actions that the vehicle has to make. E.g., steering, throttle, light-signalling, etc.

Figure 5: Lidar and radar as sensors for providing input the AI that steers the car [180].

2.2 Monitoring of Cyber-physical Systems States

Emerging CPS systems are characterized by an evolving development that never ends [165], and practitioners
in the the field are facing a fundamental development challenge: observability, testability, and predictability
of the behavior of emerging CPS is highly limited and, unfortunately, their usage in the real world can lead
to fatal crashes sometimes tragically involving also humans [68, 159, 77]. DevOps practices and tools are
potentially the right solution to this problem, but they are not developed to be applied in CPS domains [81].
For instance, in emerging safety-critical, dependable CPS—e.g., self-driving cars—requirement engineering
for DevOps has been largely unaddressed in the literature [39].

In this context, CPS behavior tends to be unpredictable—its behavior is partially specified by humans, and
partially learned, thus CPS may react differently to the same inputs over time—and it can lead to emergent
situations [72]. Novel approaches need to be designed to enable a flexible, intelligent, and context-aware CPS
behavior and states monitoring, to meet the required level of trustworthiness.

To maximize the overall quality of CPS software, an important requirement is to increase the ability of monitor-
ing CPS behaviors and states at run-time as well as statically monitoring QAs of CPSs via DevOps technologies
during the CPSs evolution.

Areas where researchers contributed to facilitate this tasks are the run-time monitoring [15] and simulation-
based approaches/frameworks [145, 66, 103]. However, there is a lack of effective maintenance and evolution
techniques able to trigger static analysis, and monitoring considering both HiL/simulation activities, in the
field and operational data/inputs of CPS, to assess the system behavior.
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Figure 6: Autonomous driving system pipeline.

COSMOS targets to extend existing monitoring mechanisms to detect different forms of degradations by in-
tegrating new metrics and tools in DevOps pipelines, based on CPS-specific concepts of test effectiveness,
anti-patterns, that we extend to handle HiL and SiL aspects. To automate the (micro-)fixing of detected/pre-
dicted issues, we will design tools based on meta-heuristics, historical analysis (e.g., of failures and previous
fixes [182]), and data analytics.

2.2.1 Monitoring UAV and SDC States

Automated monitoring and testing of UAVs (and in general, robots and CPS) to ensure their proper behaviour
represents still an open research challenge [7]. Current solutions are still very limited for autonomous systems
such as UAVs, since testing such systems is substantially complicated by the need of these systems to contin-
uously collect and analyse real-time data to make runtime decisions [164, 106], which makes it more difficult
to determine whether these systems behave as expected [106] for the certification process [34, 75].

Indeed, supposed one or multiple physical variable(s) are out of their expected range for some time during a
scenario. In that case, the autonomous system can enter in an unexpected behaviour or state [155] that can be
perceived as erratic and can be potentially harmful to humans (e.g., physical instability, rotating or hovering
in place for too long, terminating the mission immaturely, miss-calculation of positions, etc.). For dealing
with such safety-related challenges, there is an increasing interest in adopting agile development paradigms
within the CPS safety-critical domains [81, 164], in which the identification of hazards and the elicitation of
safety requirements can be performed iteratively [38]. This has pushed researchers proposing the usage of
Digital-Twins1 technologies to simulate and test CPSs in a diversified set of scenarios [74, 27, 132, 22, 124] to
support testing automation [8, 178], and regression testing [88, 25], and debugging [153, 143] activities. So,
Simulation-based testing has been suggested as a promising direction to improve the UAV testing practices [6,
164, 169].

Liang et al. [105] conducted an empirical study with the goal of understanding safety-critical concerns of
UAV software development. They investigated the use of bounding functions (runtime checks on the range of

1A digital twin is a virtual representation of a real-time digital counterpart of a physical object or process
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variables) that were injected into the code by the developers of Paparazzi [133], an open-source UAV software
system. Their study revealed that a large number of such functions are linked to safety-critical UAV variables
and categorised them into five logical groups: trajectory, sensor, speed and acceleration, engine, and pose
management. They argue that their bottom-up approach for extracting safety-critical physical variables, which
starts with extracting the ones that developers put special constraints on, can ultimately lead to defining what
safety-critical actually means for such systems, which is still an open challenge.

Wang et al. [169] studied UAV software bugs (reported as GitHub issues) for two popular open-source UAV
Autopilot platforms (i.e., PX4 [117] and Ardupilot [11] ). They created a taxonomy of UAV-specific bugs and
identified their root causes (detailed in deliverable D.6.1). They also identified some challenges in detecting
and fixing UAV-specific bugs, including bug reproduction which is very hard in UAV domain considering the
non-deterministic nature of the physical environment around the UAVs. They report that developers mainly
use simulators to reproduce the bugs, but setting up realistic-enough simulation environments (that captures
the same bugs as physical tests) is hard and expensive.

Mithra, an oracle learning approach proposed by Afzal [5] for testing drones, identifies patterns of normal and
common behaviours of the system in many executions in simulation. First, it clusters drone telemetry logs to
create a model for the normal drone behaviour in specific scenarios and form a test oracle. Next, in the testing
phase, the same telemetry logs for the test flight are extracted and compared with the normal clusters in the
oracle, and the test result (fail or pass) is decided based on its similarity to one of the clusters.

Lindval et al. [106] developed a framework for automated testing of autonomous drones in simulation with
the aim to solve the test oracle definition problem. First, they define various metamorphic relations to be able
to extract a success model for a test scenario. Next, they do model-based test case generation based on the
extracted model to automatically create diversified test scenarios that should result in similar outcomes to the
model according to the metamorphic relations.

PHYS-FUZZ [177] is a fuzzing approach explicitly tailored for testing mobile robots, taking into account the
physical attributes and hazards of such robots. PHYS-FUZZ can help the robot developers find failing test
scenarios (inputs and physical environment configurations) faster than traditional approaches.

Afzal et al. [7] studied the challenges of testing robotic systems and reported logging and playback and simula-
tion testing as the most used testing practices by robot developers. They also recognise engineering complexity
of the test environment, including the design of the realistic inputs to test the system, as one of the biggest
challenges in this domain.

To understand the current capabilities and limitations of simulated testing for robotic systems, Afzal et al. [6]
surveyed robotic practitioners about how they use simulators for testing and the challenges they face.

To study the effectiveness of simulation-based testing of drones, Timperly et al. [164] conducted an empirical
study on fixed bugs in Ardupilot [11]. They investigate whether the same bugs could have been detected before
field tests if proper simulation-based testing approaches were in place. They characterise the types of bugs that
are capable of being discovered in simulation, and argue that the majority of the bugs can fall into such category
by demonstrating the procedure to detect them in simulation for some specific case-study bugs.

2.3 Flaky Tests Analysis and Identification

Testing of cyber-physical systems (CPS) is getting more and more attention to developers and test engineers in
recent years. There are several accidents with severe casualties in the past like the case with Boeing 737 Max
with two plane crashes [158]. In the case of self-driving cars (SDC) as CPS there were also several deadly
incidents such as with cars of Tesla [122, 171]. Also, the use of drones leads to incidents, such as the post
delivery drone of the Swiss Post service in Zurich leading to two crashes [121, 146]. Testing in the context of
CPS should take an important role since CPS can deadly harm human beings when they are not properly tested
to ensure safety. Ideally, the tests for life-critical CPS should ensure trust in the system but they should also be
well integrated into the development process without increasing the costs too much.
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A flaky tests are tests that passes and fails periodically or in non-deterministic way, without any system changes
(or for the same test inputs) [99, 17, 100]. Flaky tests introduce for developers several disadvantages for the
whole DevOps pipeline. A continuous integration and delivery pipeline might fail to bring the changes to
production due to failed builds caused by failing tests that are flaky [99, 17, 100]. In such a pipeline a build of
the software with flaky tests will pass or fail without changing any code related to the test or system under test.
Developers would therefore spend a lot of time trying to find a bug in the system even there is none. Thus, we
see that flaky tests introduce more overhead in the development life-cycle of a software system. We need to
address the flaky aspects in our test suites to ensure more reliability and quality of the software.

Several studies, related to flaky tests for traditional systems, were done but not yet for testing CPS in simula-
tion [130, 47, 101, 183, 148, 126, 17, 142, 151, 44, 147, 162, 102, 111]. A couple of methodologies and tools
were developed that try to predict the likelihood of a test case being flaky based on certain metrics (e.g., dif-
ferential coverage [17]). These tools have shown, that they outperform the traditional Rerun approach, which
simply reruns failing tests to verify if the outcomes change and therefore being flaky. In the case of testing
CPS in virtual environments, we can not rely on metrics like code coverage. Therefore, we need to find other
metrics based on the virtual environment itself to understand the flaky behavior of simulation-based testing
because this kind of testing is getting more and more attention in the field of CPS.

In the case of system testing of CPS, simulation-based testing is a way to reduce costs while maintaining almost
the same level of reliability of the system. In the use case of SDCs previous work was done for test selection,
prioritization and the assessment of the cost-effectiveness of simulation-based testing of SDCs [89, 24, 23].
The goal of test selection is to select only relevant test cases that are likely to fail, whereas test prioritization
defines the execution order of the selected tests so that defects are detected earlier in the testing process.
Regression testing with test case selection and prioritization in CPS can lower the testing costs while keeping
the system safe and reliable. However, previous work did not consider so far how flaky tests should be treated
during regression testing with CPS.

CPS should rely on proper tests that are not flaky since flaky tests are nondeterministic and therefore not mean-
ingful for verification and validation of CPS. Past studies have shown that flaky tests in traditional software
systems have several different root causes [47, 111]. Such root causes are classified in different categories such
as Concurrency, Resource Leak, Async Wait, Test Order Dependency, Float Precision, Time, Randomness, etc.
in the test code itself or in the coder under test. In summary, the tests of CPS should be deterministic and avoid
a nondeterministic behavior that might result from various root causes of the test itself or from the CPS.

2.4 Monitoring and Propagation of CPS Changes

Scaling static and change analysis of software and the inclusion of multiple programming languages are rep-
resenting an ongoing effort [9].

Multi-revision analysis. Past research was dedicated to analyzing historic data in form of revisions of software
projects [78, 19, 112]. Specifically, previous studies track revisions and bug reports for a software project
in a common database [52] and provided flexible infrastructures for common logistical issues, to facilitate
software evolution research Bevan et al. [20]. Complementary, Gall et al. [58, 53] proposed ChangeDistiller, a
change analysis tool that compares abstract syntax tree (ASTs) of two different versions of a software system.
Complementary, Zimmermann et al. [184] proposed approaches for predicting the location of further changes.
To enable the large-scale analysis of repository data, the Boa infrastructure was proposed [45, 46], which
provides access to the ASTs of the code of Java releases of projects. Le et al. [104] present a technique
to merge control-flow graphs of multiple versions of a software system. Similarly, TypeChef [83] analyzes
multiple configurations of C programs (i.e., #ifdefs).

Multi-language analysis Given the multi-language nature of software projects, research approaches for multi-
language program analysis have been proposed [41, 10, 96]. Specifically, Tichelaar et al. [163] proposed
a source code metamodel support refactoring of source code from different languages. Then, Strein et al.
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have developed multi-language approach capturing the relationships in source code [156]. Differently, Rakić
et al. [139] proposed a language-independent framework for software analysis [139]. Complementary, recent
work proposed further different approaches focused on multi-language anaysis of programs for the detection
of software vulnerabilities [69].

Finally, researchers investigated the characteristics of fair code reviews [61, 95, 29] as well as the defects
developers typically fix during code reviews [113]. A very close work to work reported in this deliverable are
the one of Beller et al. [18] and Panichella et al. [129] where the authors manually classified changes taking
place in modern code review of OSS projects and desired a taxonomy of software changes. Our deliverable
reports an extended change taxonomy of CPSs, which is more fine-grained compared to the one proposed in
such previous work. It is important to mention that this deliverable describes a change analysis tools developed
for analyzing and potentially classifying CPS change types based on the analysis of code and CPS operational
data between revisions.

2.5 Monitoring and Propagation of Vulnerabilities and Security Flaws

Security testing activities concern both security functional testing, i.e., validating whether the specified security
properties are implemented correctly, and security vulnerability testing, i.e., addressing the detection of system
vulnerabilities [49]. In this deliverable we focus on security vulnerability testing.

Software vulnerabilities have been extensively investigated in prior studies. Most of these related work fo-
cused on (i) identifying types of security flaws that could expose users to risks, and (ii) proposed tools for
detecting such flaws [154]. As result, a non-exhaustive list of vulnerabilities were studied and concern (i)
inter-application communication vulnerabilities [154, 71, 50], (ii) hijacking of vulnerabilities [108], (iii) se-
curity risks related browsing [179], and other major types of privacy policy violations [152].

Jimenez et al. [80] studied vulnerabilities reported in the National Vulnerability Database (NVD) and char-
acterized the corresponding fixes. Linares Vásquez et al. [168] conducted an empirical study characterizing
the types of Android-related vulnerabilities, the survivability of vulnerabilities, as the number of days between
the vulnerability introduction and its fixing. Similarly, Thomas et al. [160] explored API vulnerabilities and
quantified the fixing rate on real devices. More recently, Watanabe et al. [172] used automated vulnerability
scanners to conduct a large-scale study and discovered that more than 50% of vulnerabilities of apps stem from
software libraries, particularly from third-party libraries.

Unfortunately, security vulnerability testing solutions for CPS are at their infancy, with most of the work
focusing on power grids and attacks against system integrity [123, 4, 110]. Strategies to drive security analysis
and testing of CPS based on security requirements and threat models had been proposed in the literature [140,
56, 86]; however, methods to automate the generation of security tests based on security requirements and
machine learning models are missing. COSMOS aims at providing tools for detecting security vulnerabilities
in different CPS application domains, focusing on the domains affecting/concerning the CPS behavior.

3 Implementation

3.1 Architecture of COSMOS Component for Quality Assessment and Moni-
toring of CPS

Figure 7 visualizes the main modules and automation goals of the COSMOS component for quality assessment
and monitoring of CPS. Specifically, as can be observed from the figure, from an high-level of abstraction,
COSMOS focuses on the following main high- and low-level challenges:

• To allow a DevOps pipeline to monitor a set of CPS relevant Quality Attributes (QAs):
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Figure 7: Overview of COSMOS Component for Quality Assessment and Monitoring of CPS

1. Monitoring CPS States

2. Monitoring Change Propagation

3. Monitoring of security vulnerabilities of CPS

4. Monitoring of Antipatterns

• To mitigate CPS degradation forms:

1. Detection of flakiness issues in X-in-the-loop testing

2. Prediction of CPS degradation patterns

3. Design of recovery solutions based on (micro-)fixes.

• Monitoring of Key performance indicators (KPIs) related to key business and development goals.

From a technological perspective, in the context of monitoring CPS States and flaky tests, COSMOS focuses
on addressing the realization of solutions enabling the monitoring or identification of (i) of CPS states with X-
in-the-loop Facilities, (ii) of Flaky Scenarios / tests for CPS with X-in-the-loop Facilities. Moreover, COSMOS
focuses on addressing the realization of mitigation strategies focusing on: (i) the prediction and monitoring of
Flaky Scenarios / Tests of CPS, to mitigate the risks of encountering unexpected behaviors while improving
the general quality of CPS tests; (ii) support fixing of Flaky Scenarios / tests of CPS. Finally,

In the context of monitoring and propagation of CPS changes and vulnerabilities, COSMOS focuses on ad-
dressing the realization of solutions enabling the (i) CPS Change Analysis and Propagation (in Open-source
use cases and COSMOS use cases); (ii) the CPS vulnerability analysis and propagation (in Open-source use
cases and COSMOS use cases), with specific focus on identifying static vulnerabilities to use for vulnerability
proneness analysis (and potentially the vulnerability propagation) in CPSs.

The following sections elaborate on the status of the current development and the next steps of the COSMOS
development activities.
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Figure 8: High level architecture of AERIALIST

3.2 Prototype for Monitoring UAV States

3.2.1 UAV Test Bench

To be able to monitor UAV states at runtime, we developed a modular and extensible test bench for UAV
software called AERIALIST (Autonomous aERIAL vehIcle teST-bench). Figure 8 demonstrates the overall
architecture of AERIALIST. The implementation 2 currently supports PX4 platform, but can be extended to
support other UAV platforms as well.

The input is the test case description, which can be in a config file, set in specific environment variables, or pro-
vided directly to the Command Line Interface (CLI) as parameters. AERIALIST prepares the environment for
running the test in the Test Runner subsystem, which abstracts any dependencies to the actual UAV, its software
platform, specific flight modes and simulation environment. After setting up the simulation environment as de-
scribed in the test description (if testing a simulated UAV), Test Runner connects to the drone (simulated or
physical) and configures it as instructed at startup, and stats sending runtime commands. It also monitors UAV
state during the flight, and extracts the flight logs at the end of the test for future analysis. We will describe
each module in more details in the following sections.

PX4 Platform PX4 [117] is an open source flight control platform used to implement a UAV system. PX4
supports Software In-the-Loop (SIL) simulation to safely execute UAV flights in simulation environments, with
the purpose of checking novel control algorithms before actually flying the UAV, limiting the risk of damaging
the vehicle. It also supports Hardware In-the-Loop (HIL) simulation, by providing simulation inputs to a
firmware deployed on a real flight controller board.

2https://cosmos-devops.cloudlab.zhaw.ch/cosmos-devops/cosmos-tools/UAV-
TestBench
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PX4 Simulation Environments. Simulators allow PX4 to control a modeled vehicle in a simulated world.
Hence, PX4 communicates with a simulator (e.g., Gazebo [94]) to receive sensor data from the simulated
world and send actuator control commands back. In this setting, PX4, similarly to a real vehicle, can interact
with the simulated vehicle using a ground control station (GCS), an offboard API (e.g. ROS), or a radio
controller/gamepad, both to send telemetry from the simulated environment and to receive commands. PX4
supports several HIL and SIL simulators [36]. In the context of our work, we considered Gazebo [94] as PX4’s
reference 3D simulation environment since it is particularly suitable for testing UAV’s obstacle avoidance and
computer vision functionalities.

PX4 Flight Logs. PX4 logs any message communicated between remote control (RC) and UAVs, or between
its internal modules [2]. This includes the sensor outputs, location, other estimations based on sensor readings,
the commands sent to the UAV, and the errors/warnings from the internal modules. Logs are stored, after each
flight, on the UAV file system, and can be analysed later to investigate issues (and their root causes) happened
during a flight [2].

The uLog file, abbreviated from Unified Log, is the standard file format for flight registers generated by PX4
[118]. It contains all Micro Object Request Broker (uORB) messages used for inter-thread and inter-process
communication. These messages are used in the asynchronous communication in the robotic cycle following
the publish/subscribe pattern [174]. This pattern relies on a message broker called uORB, which relays all
messages from the publisher (e.g IMU) to the subscriber (e.g. EKF). Each message is published by a UAV’s
sensors or one of the various state estimators; each message contains a relative timestamp since the UAVs
boot-up accompanied by the publisher’s measurements. In order to facilitate the analysis and usage of this file
format, there exist libraries that allow parsing the uLog in order to extract the data, for example, pyulog for
Python or ulogreader for Javascript [118].

PX4 Flight Modes. Flight modes define how the autopilot responds to RC input, and how it manages the vehicle
movements during fully autonomous flights. Flight modes provide different levels of autopilot assistance,
ranging from automation of common tasks, execution of a pre-computed trajectory, takeoff and landing, to
mechanisms that make it easier to regain (or hold), when needed, a certain altitude level or position. Flight
modes can be divided into manual and autonomous modes. Manual modes allow the user to control the vehicle
movement via the RC sticks, while autonomous modes are fully controlled by the autopilot, with no pilot/RC
input. Table 1 summarises PX4 flight modes.

PX4 Parameters. Within PX4 the behaviour of a UAV can be configured and tuned using parameters [167].
These parameters allow for a fine-tuning of the UAV calibration values, and flight behaviour such as maximum
speed, jerk, or acceleration, and safety configurations such as maximum time without ground control connec-
tion and maximum distance from ground control. Each parameter has a defined type and range of values it
accepts with a maximum step size, if there is any. In addition, PX4 allows for non-critical parameters to be
changed during flight, which is reflected in the uLog file. All parameters of the UAV are available in the uLog
file together with the value of it and the timestamp at which the parameter was set.

PX4 Integration. There are a range of methods for developers to develop on top of PX4 platform and extend
its functionalities or interact with the drones.

MAVLink [97] is a very lightweight messaging protocol for communicating with drones (and between onboard
drone components). MAVLink follows a modern hybrid publish-subscribe and point-to-point design pattern:
Data streams are sent / published as topics while configuration sub-protocols such as the mission protocol
or parameter protocol are point-to-point with retransmission. Messages are defined within XML files. Each
XML file defines the message set supported by a particular MAVLink system, also referred to as a "dialect".
The reference message set that is implemented by most ground control stations and autopilots is defined in
common.xml (most dialects build on top of this definition).

MAVSDK is a collection of libraries for various programming languages to interface with MAVLink systems
such as drones, cameras or ground systems. The libraries provides a simple API for managing one or more
vehicles, providing programmatic access to vehicle information and telemetry, and control over missions,
movement and other operations. The libraries can be used onboard a drone on a companion computer or on the
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Table 1: Flight modes in PX4 [118]

Flight mode Description

Position
The multi-copter responds to the control input
holds the position and altitude when no new input is given
does counteract existing inertia or wind

Altitude
The multi-copter responds to the control input
holds the altitude when no new input is given
does not counteract existing inertia or wind

Manual
The multi-copter responds to the control input
does not hold the position when no new input is given

Mission
Vehicle executes a predefined autonomous mission (flight plan)
that has been uploaded to the flight controller

Return
Vehicle flies a clear path to a safe location
often used in an event of a triggered failsafe event (e.g. RC connection lost)

Takeoff Vehicle ascends to takeoff altitude and holds the position

Land Vehicle descends and lands at the position where it was engaged

Hold/Hover Vehicle hovers at the current GPS and altitude position

Return Vehicle flies a clear path to to the position dictated by the parameter settings

ground for a ground station or mobile device. MAVSDK is cross-platform: Linux, macOS, Windows, Android
and iOS.

ROS (Robot Operating System) is a general purpose robotics library that can be used with PX4 for drone
application development. ROS benefits from an active ecosystem of developers solving common robotics
problems, and access to other software libraries written for Linux. It has been used, for example, as part of the
PX4 computer vision solutions [137], including obstacle avoidance and collision prevention.

Test Runner To evaluate a test definition, we generate and execute the corresponding simulated test case
automatically. The test case automates all necessary steps: setting up the test environment, building/running
the firmware code, running/configuring the simulator with the simulated world properties, connecting the sim-
ulated UAV to the firmware, and applying the UAV configurations from the test case properties at startup.
Then, the test case commands are scheduled and sent to the UAV, the flight is monitored for any issues, and
after test completion, the flight log file is extracted.

Test Description. The de-facto testing standard of UAVs relies on manually-written system-level tests to test
UAVs in the field. These tests are defined as specific software configurations (using parameters, config files,
etc.), in a specific environment setup (e.g., obstacles placement, lightning conditions), and a set of runtime
commands. Such runtime commands received during the UAV flight (from RC, GCS, onboard computers,
etc.), make the UAV fly with a specific human observable behavior (e.g., flight trajectory, speed, distance
to obstacles). We model a UAV test case as a set of test properties (e.g., ⟨configuration, environment, com-
mands⟩) that control the flight and a set of pre-defined UAV expected states (e.g., ⟨trajectory positions⟩)
during the flight. More specifically we define a test case by the following properties, which are fed to AERI-
ALIST as an input file, or command arguments, and refer to them as test description:
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• Configs: Drone configuration at startup (all parameter values and configuration files required to start the
simulation).

• Commands: Timestamped external commands from the ground station or the remote controller to the
drone during the flight (e.g., change flight mode, go in a specific direction, enter mission mode).

• Environment (optional): Simulated world’s configurations (e.g., used simulator, obstacles’ position and
shape, wind speed and direction).

• Expectation (optional): time series of certain sensor reading that the test flights are expected to follow
closely.

Generator. The Generator module deals with setting up the simulated world before testing UAVs in SIL mode.
It sets up and prepares the simulation environment as described in the test description, in a specific simulator
(e.g., Gazebo, jMAVSim), along with the described static and dynamic objects and simulated UAV.

Configurator. module is responsible for setting up and initialising the UAV under test (either simulated or real)
before flying the UAV, according to the instructions in the test description. This includes building the code,
connecting to the drone via MAVLink, setting the parameters, uploading any needed resources, etc.

Commander. module is responsible for all the runtime communications to the UAV, including scheduling
and sending the Remote Control (RC) commands (e.g., manual sticks, flight mode changes, arm/disarm),
communications from Ground Controll Station (GCS) or the offboard commands coming from a companion
computer.

Monitor. is the module responsible for runtime analysis of UAV state during the flight. Using MAVLink, we
are able to subscribe to any messages communicated between PX4 modules, including sensor values. These
messages allow monitoring any runtime checks described in the test description to evaluate monitoring func-
tionalities before deploying on the UAV. The tested and finalised monitoring solutions can then be developed
directly in the PX4 firmware as an on board module, or as a ROS module running on the companion computer.

Analyst. is responsible for any post-flight analysis, mostly based on the extracted flight log. It parses the ULog
files, and extracts any important and relevant data to analyse test result based on the given expectations in the
test description.

Virtualization Setting up all the requirements and dependencies of AERIALIST can be problematic. To
simplify all these steps, we created Docker [1] images with all the necessary tools and dependencies installed
and configured and ready to use. Docker is an open-source platform that facilitates the development, distribu-
tion and deployment of applications [138]. Docker provides a way to run software in a isolated environment
from the host’s operating system [76]. Each application is contained in a so-called container, which is a stan-
dard unit of software that also contains all the software dependencies, such as system tools and libraries and
code [76].

All application instances are run isolated from each other and rely on the Docker Engine, which is run on the
host OS. Each simulation contains its own instance of the core architectural elements such as Gazebo, PX4
and the test runner in order to launch and control the various components. Once the simulations conclude, the
AERIALIST gathers all the flight logs from the containers and stores them on the host machine.

The UAV performance in simulation relies heavily on the processing power of the computer running AERIAL-
IST. Also, due to the nature of the control mechanisms and the surrounding environment, the UAV behavior
(both in simulation and in real world) can be non-deterministic. To eliminate such effects on the test outcomes,
AERIALIST enables users to deploy the test runner containers in a Kubernetes [98] cluster, instead of running
on their local machine. This enables a vast range of abilities, including setting specific resource limits and re-
quirements, and running multiple simulations of the exact same tests in parallel, to eliminate outliers in the test
results. For instance, one can run each test case n times, extract the logs, and use the average of the recorded
states for the analysis.
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Figure 9: AERIALIST’s Kubernetes deployment architecture

Figure 9 demonstrates AERIALIST’s Docker and Kubernetes integration. Using the CLI, one can run a test
case in a Kubernetes cluster, possibly for n times in parallel. Tests (simulations) will be translated into a ku-
bernetes Job, and executed inside isolated docker containers (with predefined and similar resource utilization,
and PX4 and simulators already installed and wrapped in a Kubernetes Pod) and AERIALIST will wait until
the mentioned number of parallel executions are finished. Possible errors in setting up the pods, and running
the tests are handled automatically by Kubernetes engine, and the flight log is uploaded to a cloud storage after
test executions. CLI will gather all the uploaded flight logs, and process them centrally afterwards.

Using AERIALIST AERIALIST can be used as a Python command-line utility. Since it needs proper setup
and configurations of PX4 platform for execution, we prepared a Dockerfile to easily setup all the requirements
as follows:

docker build . -t aerialist
docker run -it aerialist bash

This will open a bash terminal to the container with all the dependencies and requirements that directly supports
the execution of following commands. As we detail below, AERIALIST’s command-line supports the execution
of various test scenarios described above by taking appropriate commands and inputs.

Log Replay. To replay a previously stored PX4 flight log (’.ulg’) file, AERIALIST requires the following
command:

./run.py --log /path/to/file.ulg experiment replay

Manual Test. To run an existing series of commands stored in a csv file, AERIALIST requires the following
command:

./run.py --commands /path/to/file.csv experiment replay

Mission Test. To run an existing mission stored in a file, AERIALIST requires the following command:

./run.py --mission /path/to/file.plan experiment replay

RC Test. To enable manual RC inputs to the drone using keyboard inputs, AERIALIST requires the following
command:
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./run.py experiment manual

Configurations. AERIALIST supports various (optional) configuration parameters to combine with any of the
above commands. The default values for each of them can be set by the corresponding environment variables,
as documented in the repository.

--drone {sim,cf,ros,none}
type of the drone to connect to

--env {gazebo,jmavsim,avoidance}
the simulator environment to run

--params PARAMS parameters file address to set at startup
--obst [OBST] obstacle position and size to put in simulation world
--obst2 [OBST2] obstacle position and size to put in simulation world

--headless whether to run the simulator headless
--speed SPEED the simulator speed relative to real time
--docker whether to run the tests in docker containers
--k8s whether to run the tests in Kubernetes cluster
-n N no. of parallel runs (using Docker or K8S)

--cloud whether to read and write files to the cloud
--output OUTPUT cloud output path to copy logs
--trajectory TRAJECTORY

expected trajectory file address

3.2.2 UAV Runtime Monitoring

In this section, we discuss our methodology and approach for monitoring UAV behavior at runtime. We use
the functionalities provided by AERIALIST for generating a big dataset of simulated flights, to be able to
analyse the normal and common behavior of a UAV during flight. Then, we analyse the generated dataset
for the common behavior, extracting the most relevant features (i.e., logged sensor values), and their expected
range in a specific flight mode (i.e., landing). The extracted relations and ranges can then be developed and
integrated into the monitoring module of AERIALIST, to enable automated monitoring of UAVs at runtime.
We will discuss these steps in detail in the remaining of this section.

Dataset Generation To be able to study runtime behavior of UAVs, we first need a large enough dataset
of logged flights to start the analysis. So, we developed a module called Flight Generator, that generates
various randomized test description files, based on some predefined scenario templates. The generated files
are then passed to AERIALIST for execution in the simulation environment, and the flight logs are extracted for
future analysis. Table 2 describes the flight templates, and their randomized parameters we used for generating
the dataset, while figure 10 demonstrates a sample flight trajectory for each of them. Flight generator picks
random values for the parameters in a preset range, and we run the test descriptions using AERIALIST, each
for 10 times in parallel to be able to also analyse the randomness involved in the platform and simulators. The
resulting dataset is described in table 3

Data Analysis According to a survey on military UAV incidents [166], About 20% of UAV crashes occur
during the landing phase, with an additional 8% occurring during the takeoff phase. Therefore, we decided
to focus on monitoring UAVs in the landing phase as the first step towards a general monitoring solution for
UAVs.

During our preliminary evaluation of our dataset, we noticed that over 75% of the simulated flights in our
flight sets did not land successfully at first attempt, but instead bounced back up once or more times before
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Table 2: Dataset scenarios description

Scenario Template Parameters

Manual

Takeoff to height h
Hover in place for th seconds
Fly in (xn, yn) direction for tn seconds : n times
Fly in (z) direction for tz seconds
Land

h, th, n, n× (t, x, y), (tz, z)

Autonomous

Setup a mission flight:
1) Takeoff to height h
2) Fly towards two way-points at (xn, yn, zn)
3) Land
Place a (sx, sy, sz) sized obstacle at position (ox, oy)
Execute the mission

h, 2× (x, y, z), (sx, sy, sz), (ox, oy)

Figure 10: Sample flight trajectories for manual (left) and autonomous (right) flight templates

Table 3: Dataset statistics

Dataset tests # exec. # total #

Manual 150 50 7500
Autonomous 150 10 1500
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Figure 11: Landing phase of flights with an ideal (left) and bouncing (right) landing

their successful land (see figure 11). Furthermore, this landing hop sometimes reached more than 1 meter over
the ground. This behaviour could pose risks to the UAV because if it has to collide with the ground too hard, it
could damage the structural integrity of the UAV’s frame and components. Furthermore, it also poses a risk to
objects and persons around the landing area, as it performs quick manoeuvres to land again.

Hence, we focus our further analysis on defining the distinguishing characteristics of ideal vs bouncing land.
We aim to come up with a monitoring solution that can observe UAV states during the landing phase, and detect
if it is experiencing a bouncing one. To this end, we annotate our dataset with labels according to the flight
landing behaviour, ideal or bouncing. We use the ground-truth values of the UAV’s position stored in each of
the flight logs to determine how many times the UAV contacted the ground. Figure 11 illustrates a comparison
between misbehaving landing and non-misbehaving landing. The flight displayed in left side performs an ideal
landing, while the flight in right side bounces back and tries to land two more times before succeeding. The
plots also display a vertical line indicating the timestamp at which the UAV touched the ground.

Feature Extraction. The flight log files contain a vast amount of data, coming from as many as 65 message
publishers in the examined UAV, but not all of the data is relevant in our context. Therefore, we decided
to focus our analysis on four messages published by the UAV’s state and position estimator. The selected
messages are particularly relevant as they are artifacts of the Extended Kalman Filter (EKF) [119]. This makes
them heavily reliant on the UAV’s perception layer.

In particular, we selected the estimated sensor biases and estimated errors in combination with the estimated
vibrations. Based on the functioning of the EKF filter, the growth in estimated sensor biases can lead to
a growth in estimated position, velocity and angles errors. In addition to evaluating values related to the
mathematical model governing the UAV, we added the vibration metrics of the UAV, as low vibrations are
needed to establish a smooth flight [91]. As shown in Table 4, we selected the UAV’s local and global position
estimator, paired with the estimated sensor bias and estimated status. Each of the selected published messages
contains many features, some of which were removed from our analysis as they were not used by the UAV and
always reported a zero-value throughout the landing phase. The resulting feature set can be seen in Table 4.

All data stemming from the single flight logs are consolidated into a single dataset to apply feature selection
methods. This is achieved by computing the average value for each physical feature during the landing phase
for each flight log. This process generates a dataset containing the same amount of data entries as the number
of flights in the dataset, with each data entry containing the average of each selected feature.

To better evaluate the impact of each selected feature, we compute the Mean Decrease Gini, also referred
to as the Mean Decrease in Impurity [62, 114]. The Mean Decrease Gini is a measure of how each feature
contributes to the homogeneity of the nodes and leaves in the resulting random forest [114, 170]. The Mean
Decrease Gini is used to compute the feature importance and narrow the number of log entries that our model
has to keep into account[114, 170]. The result of this investigation can be found in Figure 12, which shows the
features in order of importance.
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Table 4: Relevant perception features and their description

Topic Content Description Range Detected Range
estimator_local_position Timestamp Publishing timestamp 0,∞ −

(x, y, z) Estimated x, y and z position −∞,∞ 0, 177.8m
(vx, vy, vz) Estimated speed in x,y and z direction −∞,∞ −3.3, 8.9m

s

(ax, ay, az) Estimated acceleration in x,y and z direction −∞,∞ −119.3, 79.0m
s2

eph, epv Estimated positional error in horizontal direction and in vertical 0,∞ 0.1, 157.4m
evh, evv Estimated velocity error in horizontal direction and vertical 0,∞ 0.08, 157.4m

s

estimator_global_position Timestamp Publishing timestamp 0,∞ −
Lat, Lon, Alt Estimated latitude, longitude and altitude (GPS based) −∞,∞ −
eph, epv Estimated positional error in horizontal direction and vertical 0,∞ 1, 3.6m

estimator_sensor_bias Timestamp Publishing timestamp 0,∞ −
Gyroscope bias Estimated sensor bias present in the gyroscope −1, 1 −0.05e−2, 0.27e−2
Accellerometer bias Estimated sensor bias present in the accelerometer −1, 1 −0.42e−2, 20.02e−2
Magnetometer bias Estimated sensor bias present in the magnetometer −1, 1 −0.03e−2, 0.35e−2

estimator_status Timestamp Publishing timestamp 0,∞ −
Vibrations Estimated vibrations percieved by the UAV 0, 1 0.79e−4,−0.68e−2

Figure 12: Top features ordered by importance from the top to the bottom
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Figure 13: PCA component importance Figure 14: Heatmap of the contibution of features to the components from
the PC analysis

Using the results from the Mean Decrease Gini investigation as a starting point, we reduced the features of
interest to the following:

• Estimator Sensor Bias: Accelerometer Bias and Gyroscope Bias

• Estimator Local Position: Estimated positional and velocity error vertical and horizontal (epv, eph, evv,
evh)

• Estimator Global Position: Estimated positional error vertical and horizontal (epv, eph)

• Estimator Status: vibrations in z-directions

We then performed a Principal Component Analysis on the dataset to identify which features have the highest
impact on our ability to classify a UAV landing as ideal or bouncing. As shown in Figure 13, the PCA
identified 9 principal components with non-negligible importance, thus with significance above 1%. The first
component accounts for 33% of the variance in the data. The second component accounts for 21%, the first
two components account thus for more than 50% of the variance in the data.

As visible in Figure 14, the first principal component is most strongly correlated with the estimated local
velocity error and positional error. The second component increases with the decrease of the accelerometer bias
and bias in the gyroscopes’ pitch direction, and the third component relies on a combination of the gyroscope
bias and the accelerometer bias. Figure 14 also displays how some of the features are correlated to each other,
such as the positional error for global and positional estimation and the estimated gyroscopic bias along the
UAV’s x- and y-axis.

Preliminary Results Here, we aim to adress the following research questions:

RQ1:What are the UAV’s physical features (sensor values and estimations) that can distinguish ideal and
bouncing landings?

The Mean Decrease Gini of the aggregated features, Figure 15, displays the significant impact of the sensor
bias from the accelerometer and gyroscope on the decision tree generated by the model. This is aligned with the
feature importance found without the aggregation and discussed in Figure 12, where we identified the sensor
biases, combined with vibrations and positional errors to be the most important features. Figure 15 also shows
that the Mean Decrease Gini on the aggregated feature set does not present one feature overly out-weighting
the others. Combining these results with the results from the Principal Component Analysis, it appears that
it is the combination of multiple aggregated features which leads to a better evaluation of a UAV’s behaviour
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Figure 15: Mean Decrease Gini on aggregated features, sorted by top 20 most important features

at landing. Therefore the physical features as connected to UAV landing behaviour we identified in order of
importance are: the global position error, the accelerometer bias, the gyroscope bias, the estimated vibrations
on the vehicle z-axis, and finally the local position.

We identified 13 physical features connected to the landing behaviour. These comprise the accelerometer and
gyroscope estimated sensor bias along each of the three-axis, the estimated positional error in the vertical
and horizontal position for the global or local position, the estimated velocity error for the local position, and
finally, the estimated vibrations along the UAV’s z-axis.

RQ2: To what extent can we automatically classify the bouncing landings?

Here, we train and evaluate various ML models using our dataset. The performance for each of the models is
shown in Figure 16, the average prediction time for each entry lies at just 50 microseconds. The slowest model
is the Random Forest Classifier with an average prediction time of 130µs, while the fastest is the Gaussian
Naive Bayes Classifier with 2.6µs. Overall, the RF classifier and GNB performed nearly identical, with a
slight difference of less than 0.01% on both the test and validation sets. The worst performing models are SVC
and LRC, which only predicted some misbehaving flights correctly with a recall of 0.19 and 0.24, respectively.
Overall the accuracy of RFC and GNB is never below 0.97, with a precision score near 1. This results in RFC
and GNB being the best performing models across all scenarios.

With an increased offset, the models will perform differently. As shown in Figure 18, if the offset is increased
beyond 1 second, the model accuracy, recall and F-Score decrease rapidly, to then stabilise at a value around
0.8. The model’s performance seems to be worst at 2 seconds, which could be due to two factors. First, the
results were only based on one random forest generation, and thus, due to the randomness in the creation
process, the results could vary one run from the second one. Secondly, the model could be in a transition phase
from one set of most important features to another that performs better after 2.5 seconds.

The Random Forest and the Gaussian Naive Bayes classification algorithms can automatically classify bounc-
ing landings with precision, recall, accuracy and F-metric values above 96%. The models were trained on the
aggregated data from the start of the landing until the end with a offset of 1 seconds. While all the models
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Figure 16: ML Model metric comparison on full landing phase classification

Figure 17: Confusion matrix for cross-scenario on validation set

Figure 18: Evolution of performance metrics for Random Forest with different offsets
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showed a precision equal to 1, the Random Forest Classifier and Gaussian Naive Bayes outperformed the Sup-
port Vector Classifier and Logistic Regressor. The RFC performed roughly equal to the GNB, in all scenarios
it they were evaluated on, while instead SVC and LRC performed poorly in all scenarios. In contrast, there are
no substantial differences (± 1%) in the performance of the best models (RFC, GNB) on different scenarios.
It is important to note that the GNB algorithm has a substantial advantage of predicting faster by a factor of 50
(2.6µs per prediction). We also show that with the increase of the offset, the performance metrics decreases,
suggesting that there are some features which can more reliably predict the behaviour of the UAV during the
last seconds.

3.3 Prototype for Monitoring SDC States

In this section, we overview of SDC-Scissor3 software architecture and its main usage scenarios; we describe
the simulation environment it uses (i.e., BeamNG.tech); and, finally, we discuss in detail the components, the
approach and the technologies behind SDC-Scissor.

3.3.1 SDC-Scissor Architecture Overview & Main Scenarios

SDC-Scissor supports two main usage scenarios: Benchmarking and Prediction. In the Benchmarking sce-
nario, developers leverage SDC-Scissor to determine the best ML model(s) to classify SDC simulation-based
tests as safe or unsafe. In the Prediction scenario, instead, developers use those model(s) to classify and select
newly generated test cases.

SDC-Scissor Software Architecture implements these scenarios by means of five main software compo-
nents: (i) SDC-Test Generator generates random SDC simulation-based tests, and (ii) SDC-Test
Executor executes them. The test results produced by SDC-Test Executor are recorded and used to
label tests as safe or unsafe; (iii) SDC-Features Extractor extracts input features of the executed SDC
tests, while (iv) SDC-Benchmarker uses these features and corresponding labels as input to train the ML
models and determine which model best predicts the tests that are more likely to detect faults in SDCs; finally,
(v) SDC-Predictor uses the ML models to classify newly generated test cases and enables test selection.

3.3.2 BeamNG.tech’s Simulation Environment

SDC-Scissor uses BeamNG.tech to execute SDC tests as physically accurate and photo-realistic driving sim-
ulations. BeamNG.tech can procedurally generate tests [59] and was recently adopted in the ninth edition of
the Search-Based Software Testing (SBST) tool competition [127].

BeamNG.tech is organized around a central game engine that communicates with the physics simulation, the
UI, and the BeamNGpy API4. The UI can be used for game control and manual content creation (e.g., assets,
scenarios). For example, developers can use the world editor to create or modify the virtual environments that
are used in the simulations; testers, instead, can create test scripts implementing driving scenarios (i.e., the
tests). The API, instead, allows the automated generation and execution of tests, the collection of simulation
data (e.g., camera images, LIDAR point clouds) for training, testing, and validating SDCs. It also enables driv-
ing agents to drive simulated vehicles and get programmatic control over running simulations (e.g., pause/re-
sume simulations, move objects around). The game engine manages the simulation setup, camera, graphics,
sounds, gameplay, and overall resource management. The physics core, instead, handles resource-intensive
tasks such as collision detection and basic physics simulation; it also orchestrates the concurrent execution
of the vehicle simulators. The vehicle simulators —one for each of the simulated vehicles— simulate the
high-level driving functions and the vehicle sub-systems (e.g., drivetrain, ABS).

3https://github.com/ChristianBirchler/sdc-scissor
4beamngpy is available on PyPI and Github (https://github.com/BeamNG/BeamNGpy)
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Table 5: Full Road Attributes extracted by the SDC-Features Extractor

Feature Description Range

Direct Dis-
tance

Euclidean dist. between start and end
(m)

[0 – 490]

Length Tot. length of the driving path (m) [50.6–3,317]

Num L Turns Nr. of left turns on the driving path [0 – 18]

Num R Turns Nr. of right turns on the driving path [0 – 17]

Num Straight Nr. of straight segments on the driv-
ing path

[0 – 11]

Total Angle Cumulative turn angle on the driving
path

[105 – 6,420]

We employ the BeamNG.AI5 lane-keeping system as the test subject for our evaluation: the driving agent is
shipped with BeamNG.tech and drives the car by computing an ideal driving trajectory to stay in the center
of the lane while driving within a configurable speed limit. As explained by BeamNG.tech developers, the
risk factor (RF) is a parameter that controls the driving style of BeamNG.AI: low-risk values (e.g., 0.7) result
in smooth driving, whereas high-risk values (e.g., 1.7 and above) result in an edgy driving that may lead the
ego-car to cut corners [88].

3.3.3 The SDC-Scissor’s Approach and Technology Overview

SDC-Scissor integrates the extensible testing pipeline defined by the SBST tool competition6 in its SDC-Test
Executor. We use the SBST tool competition infrastructure since it allows to (i) seamlessly execute the tests
in BeamNG.tech and (ii) distinguish between safe and unsafe tests based on whether the self-driving car keeps
its lane (non-faulty tests) or depart from it (faulty tests) [59]. Consequently, SDC-Scissor can accommodate
various SDC-Test Generators for generating SDC simulation-based tests. In this deliverable, we demon-
strate SDC-Scissor by using the Frenetic test generation [32], one of the most effective tool submitted to the
SBST tool competition.

SDC-Scissor predicts whether the tests are likely to be safe or unsafe before their execution using input fea-
tures extracted by SDC-Features Extractor. Specifically, this component extracts Full Road Features
(FRFs), i.e., a set of SDC features that describe global characteristics of the tests. Those features include the
main road attributes (see Table 5) and road statistics concerning the road composition (see Table 6). Road
statistics are calculated in three steps: (i) extraction of the reference driving path that the ego-car has to follow
during the test execution (e.g., the road segments that the car needs to traverse to reach the target position); (ii)
extraction of metrics available for each road segment (e.g., length of road segments); and (iii) computation of
standard aggregation functions on the collected road segments metrics (e.g., minimum and maximum).

SDC-Scissor relies on the SDC-Benchmarker to determine the ML model that best classifies the SDC tests
that are likely to detect faults. It follows an empirical approach to do so: given a set of labeled tests and
corresponding input features, SDC-Benchmarker trains and evaluates an ensemble of standard ML models
using the well-established sklearn7 library. Next, it assesses ML models’ quality using either 10-fold cross-
validation or a testing dataset; and, finally, selects the best performing ML models according to Precision,
Recall, and F1-score metrics [88]. Noticeably, SDC-Scissor can use many different ML models; however, in
this work, we consider only Naive Bayes [31], Logistic Regression[144], and Random Forests [73]. We do so
because these ML models have been successfully used for defect prediction or other classification problems in
Software Engineering [21, 84, 128, 42].

Finally, the SDC-Predictor uses the ML models to predict the likelihood that newly generated SDC tests
are safe or not. Specifically, developers have the possibility to select the ML models recommended by the
SDC-Benchmarker (considered most accurate), or they can select other models of their choice.

5https://wiki.beamng.com/Enabling_AI_Controlled_Vehicles#AI_Modes
6https://github.com/se2p/tool-competition-av
7https://scikit-learn.org/
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Table 6: Full Road Statistics extracted by the SDC-Features Extractor

Feature Description Range

Median Angle Median turn angle on the driving
path (DP)

[30 – 330]

Std Angle Std. Dev of turn angles on the DP [0 – 150]
Max Angle Max. turn angle on the DP [60 – 345]
Min Angle Min. turn angle on the DP [15 – 285]
Mean Angle Average turn angle on the DP [52.5–307.5]

Median Radius Median turn radius on the DP [7 – 47]
Std Radius Std. Dev of turn radius on the DP [0 – 22.5]
Max Radius Max. turn radius on the DP [7 – 47]
Min Radius Min. turn radius on the DP [2 – 47]
Mean Radius Average turn radius on the DP [5.3 – 47]

Figure 19: The SDC-Scissor’s fine-grained view.

3.3.4 Using SDC-Scissor

SDC-Scissor tool is openly available and can be used as a Python command-line utility via poetry8 as
follows:

poetry install
poetry run python sdc-scissor.py [COMMAND] [OPTIONS]

To simplify SDC-Scissor’s usage, we also enable to execute it as a Docker9 container:

docker build --tag sdc-scissor .
docker run --volume "$(pwd)/results:/out" --rm

sdc-scissor [COMMAND] [OPTIONS]

As we detail below, SDC-Scissor’s command-line supports the execution of the main usage scenarios described
in Section 3.3.2 by taking appropriate commands and inputs (see Fig. 19).

Test generation. To generate SDC tests by running the Frenetic generator within a given time budget (e.g.,
100 seconds) SDC-Scissor requires the following command:

generate-tests --out-path /path/to/store/tests
--time-budget 100

Automated test labeling. SDC-Scissor labels tests as safe and unsafe by executing them in BeamNG.tech.
Since BeamNG.tech cannot be run as a Docker container, labelling tests can be only run locally (i.e., outside
Docker). This labeling facility allows developers to create datasets that can be used for the training and vali-
dation of ML models (e.g., ML-based prediction of unsafe tests). Generating a labeled dataset, requires a set
of already generated SDC tests and the execution of the following command:

label-tests --road-scenarios /path/to/tests
--result-folder /path/to/store/labeled/tests

ML models evaluation. For identifying the models that SDC-Scissor could use for the prediction, SDC-
Scissor implements a 10-fold cross-validation strategy on the input labeled dataset. The following command
tells SDC-Scissor to benchmark all the configured ML models:

evaluate-models --tests /path/to/train/set --save

8https://python-poetry.org/
9https://www.docker.com
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Note: the optional save flag forces SDC-Scissor to store the ML models’ metadata for later inspection and
usage.

Train and test data generation. Evaluating the prediction ability of SDC-Scissor requires separate training
and testing datasets. The following command lets developers to split the available tests to achieve an 80/20
split:

split-train-test-data --tests /path/to/tests
--train-dir /path/for/train/data
--test-dir /path/for/test/data
--train-ratio 0.8

Test outcome prediction. SDC-Scissor classifies unlabeled tests, i.e., it predicts their outcome, using a trained
ML model with the following command:

predict-tests --tests /path/to/tests
--predicted-tests /path/for/predicted/tests
--classifier /path/to/model

Random baseline evaluation. SDC-Scissor allows to select tests using a random strategy that provides a
baseline evaluation with the following command:

evaluate-cost-effectiveness
--tests /path/to/tests

Prediction performance. SDC-Scissor allows to assess the performance of a classifier with the following
command:

evaluate --tests /path/to/tests
--classifier /path/to/model

3.3.5 Evaluation

We evaluated SDC-Scissor conducting a large study on two datasets, referred as Dataset 1 and Dataset 2,
that contain over 12, 000 SDC tests (see Table 7). We adopted the following experimental setup to obtain
comprehensive and unbiased training datasets. For Dataset 1, we randomly generated 3, 559 valid tests using
Frenetic [32], collected input features and executed them to collect labels. For the Dataset 2, instead, we
generated 8, 545 tests using AsFault [59].

It is important to note that in executing all those tests, we experimented with different BeamNG.AI’s risk factor
as it influences the ego-car driving style. Specifically, we considered three configurations: cautious (RF 1.0),
moderate (RF 1.5), and reckless (RF 2.0) driver. Using different values for the risk factor enabled us to study
the effectiveness of SDC-Scissor on various SDCs’ driving styles. We empirically validated our expectations
by running the moderate driver using Dataset 1 tests and running all the three configurations for Dataset 2 tests.
From Table 7 we can observe that the number of unsafe tests increased with increasing values of BeamNG.AI’s

Table 7: Datasets Summary

Dataset Test Data Points
Subject Unsafe Safe Total

Dataset 1 BeamNG.AI
moderate

1’334 (37%) 2’225 (63%) 3’559

BeamNG.AI
cautious

312 (26%) 866 (74%) 1’178

Dataset 2 BeamNG.AI
moderate

2’543 (45%) 3’095 (55%) 5’638

BeamNG.AI
reckless

1’655 (96%) 74 (4%) 1’729

Total 5’844 (48%) 6’260 (52%) 12’104
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risk factor. Hence, this result confirms that the risk factor indeed strongly influences the safety of BeamNG.AI
and the outcome of tests.

To assess the performance of SDC-Scissor in optimizing simulation-based SDCs testing via test selection (i.e.,
in selecting unsafe tests before executing them), for both Dataset 1 and Dataset 2 we experimented with the
ML models mentioned in Section 3.3.3 trained and validated using an 80/20 split.

As reported in Table 8, on Dataset 1 SDC-Scissor accurately identified unsafe tests, with F1-score ranging
between 35.1% and 56.1%. On Dataset 2, instead, it identified unsafe tests with F1-score ranging between
52.5% and 96.4%.

Table 8: Performance of the ML models with dataset split 80/20. The best results are shown in boldface.

Dataset RF Model Prec. Recall F1-score

Logistic 45.8% 60.9% 52.3%
Dataset 1 RF 1.5 Naïve Bayes 40.2% 92.5% 56.1%

Random Forest 41.3% 30.5% 35.1%
Logistic 43.3% 87.3% 57.9%

Dataset 2 RF 1 Naïve Bayes 36.7% 92.1% 52.5%
Random Forest 40.7% 79.4% 53.8%

Logistic 78.1% 65.3% 71.1%
Dataset 2 RF 1.5 Naïve Bayes 79.3% 53.2% 63.6%

Random Forest 75.8% 62.7% 68.6%

Logistic 99.6% 82.8% 90.4%
Dataset 2 RF 2 Naïve Bayes 98.7% 94.3% 96.4%

Random Forest 99.7% 92.7% 96.1%

Complementary to the previous experiments, we investigated, in the context of Dataset 2, SDC-Scissor’s ability
to be more cost-effective compared to a random-based baseline that randomly selects from the dataset the tests
to be executed [88]. Specifically, SDC-Scissor was trained on 70% of tests from Dataset 2 and tested on the
remaining 30% of tests, while the random-based baseline randomly selected the same amount of tests directly
from the remaining 30% of tests. Our evaluation on Dataset 2 shows that for all RF (risk factor) values the best
performing ML model of SDC-Scissor (i.e., Logistic) reduced the time spent in running safe/unnecessary tests
than a random baseline strategy with a speed-up of circa 170%. On Dataset 1, instead, SDC-Scissor speed up
testing up to 158% for the Naïve Bayes and 107% for Logistic.

3.3.6 Conclusions

This deliverable presented SDC-Scissor, a ML-based test selection approach that classifies SDC simulation-
based tests as likely (or unlikely) to expose faults before executing them. SDC-Scissor trains ML models using
input features extracted from driving scenarios, i.e., SDC tests, and uses them to classify SDC tests before their
execution. Consequently, it selects only those tests that are predicted to likely expose faults. Our evaluation
shows that SDC-Scissor successfully selected unsafe test cases across different driving styles and drastically
reduced the execution time dedicated to executing safe tests compared to a random baseline approach.

As future work, we plan to replicate our study on further SDC datasets, AI engines and SDC features to study
how the results generalize in the autonomous transportation domain. Additionally, given our close contacts
with the BeamNG.tech team, we plan the integration of SDC-Scissor into BeamNG.tech environment to enable
researchers and SDC developers to use SDC-Scissor as a cost-effective testing environment for SDCs. Finally,
we plan to investigate the use of SDC-Scissor in other CPS domains, such as drones, to investigate how it
performs when testing focuses on different types of safety-critical faults. Specifically, important for this is to
investigate approaches that are more human-oriented or are able to integrate humans into-the-loop [159, 128,
42, 67].
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4 Flaky Tests Analysis and Identification for UAVs

UAVs can behave nondeterministic both in simulation environments and in the real world because of various
reasons including the noise in the sensor outputs, message delays in their inter module communications, battery
malfunctioning, changes in weather condition, and also because of the randomness involved in their control
algorithms, e.g., their AI components. We already discussed the nondeterminism in the landing phase of a UAV
flight in section 3.2.2. Here we focus our analysis mostly on the obstacle avoidance in autonomous flights.

To be able to study test flakiness in UAV, we first generate challenging test cases for the UAV, and then analyse
the behaviour of the drone, executing the exact same test case for multiple times, using AERIALIST.

4.1 Study Definition and Methodology

Context. Given a simulated test case configuration for autonomous flight (the mission waypoints and obstacle
locations and sizes), we want to generate a more challenging simulated test case by introducing an additional
obstacle, to force the UAV to get too close to the obstacle (i.e.,, having a distance below a predefined safety
threshold) while still completing the mission. This will create a risky environment for the UAV to operate the
mission in.

Specifically we want to answer the following research question:

Can we modify the simulated test case properties during autonomous flights to make them more challenging
for the UAV autonomous controller, and force it to behave non-deterministic?

We first put a secondary obstacle with the exact size of the first one in a position far enough from the initial
obstacle that does not change make the UAV to change trajectory, as illustrated in Figure 20(left). We then
slightly move the second obstacle towards the first one, to close the path for the drone, and force it to take
a more risky path. For each candidate test case, we run the test in simulation for 10 times in parallel using
AERIALIST. We aggregate the logs, and compute the minimum distance of the flights to the obstacles, which
we want to minimize.

4.2 Study Results

We repeat our search for the second obstacle’s position for 10 times, and run each of the found test cases for
10 times in parallel. As can be seen from the best final solution across 10 runs in Figure 21, we were able to
position and size the second obstacle in a way that the UAV (i) was forced to behave in a non-deterministic way
across multiple parallel simulations, taking different routes through or around the obstacles; (ii) experienced
an unsafe behavior, often very close to the first obstacle; (iii) even worse, occasionally the UAV crashed into
the obstacle, in some simulations. The second obstacle was moved to almost 8m to the left and 1.1m upwards,
making it increasingly harder for the UAV to follow the path. Interestingly, if we position the obstacles closer
to each other (as illustrated in Figure 20(right), the UAV would always act in a deterministic way, always taking
a route around the left of the first obstacle, without getting involved in risky situations.

As reported in Table 9, the algorithm was able to find crashing test cases consistently in all 10 runs, forcing the
UAV to get as close as 0m to the obstacle, down from the 3.3m safety distance of the seed. Also, on average,
the UAV crashed into the obstacle in 2.5 out of the 10 simulations for the best test cases found, and got unsafely
close (less than 1.5m) in 6 more of them. All experiment results are available online 10.

10https://filer.cloudlab.zhaw.ch/index.php/apps/files/?dir=/ASE2022/Flaky%
20Test%20Generation&fileid=2412623
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Figure 20: Intermediate test cases with deterministic flights

Figure 21: final test case with nondeterministic UAV trajectory

Table 9: Evaluation metrics

Metric Ave.

Seed Min_dist 3.36 m
Final Min_dist 0 m
Min_dist Red. 100%
Crash Rate 25 %
Unsafe Rate 84 %
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Modifying a replicated field test in the simulation allows generating challenging test cases that can expose
the UAV to nondeterministic behaviors or even crashes.

4.3 Future Works

Next step of the research of this deliverable is to study the characteristics of the UAV during the flaky tests.
Specifically, we will investigate the root causes of the observed nondeterminism in the above test cases. This
will lead us toward a solution to automatically distinguish test cases that can potentially be flaky, even if we
have not observed contradicting test results with its limited executions.

5 Flaky Tests Analysis and Identification for SDCs

Motivation. The behavior or SDCs in simulation environments is non-deterministic as preliminary experi-
ments showed. If a test case fails and passes in different runs then it is considered as flaky. Naturally, the
identification of flaky tests depends on the definition of a failure. In the preliminary experiments the lane-
keeping ability of the SDC was tested and checked if the SDC is going out of the lane to a certain percentage.

The following sections describe the methodology used to identify flaky tests and show the results of the pre-
liminary experiments with the according tool11.

5.1 Study Definition and Methodology

5.1.1 Methodology Overview

To assess the flakiness of SDCs in simulation-based tests several executions of the same tests are required to
determine if the test outcomes of a single test changes among several executions. The definition of a failure
impacts naturally the flakiness behavior of SDCs. For the preliminary assessment of flakiness the following
definition of a failure applies. If the car drives off the lanes (from the boundaries of the road) for 50% then the
test is seen as a unsafe scenario and a failure is observed.

To generate a dataset of test cases for SDCs the Frenetic test generator is used of the SBST2021 tool com-
petion [32]. The generated dataset of test cases is passed into a pipeline that executes each single test case 10
times. The used pipeline is SDC-Scissor [23] which allows to develop specialized testing pipelines for SDCs
with the BeamNG.tech 12 simulator. The BeamNG.tech simulator allows to simulate SDCs more realistic than
other simulators since it uses a sophisticated soft-body physics engine. As soon the car goes off the lane by
50%, the test executions failed, otherwise it passes. The outcome (pass, fail, or error) of each test execution is
tracked and stored as a CSV file for post-analysis.

For the post-analysis, for each execution of a test cases the outcome is analyzed. The analysis comes up with
two types of flakiness:

1. If the outcome changes of a single test and there is no error in one of the executions then the test case is
seen as strongly flaky.

2. If the out come changes because there is also an error in the test execution then the test case is seen as
weakly flaky.

11https://cosmos-devops.cloudlab.zhaw.ch/cosmos-devops/cosmos-devops-
internal/-/tree/master/WP6/zhaw-cosmos-flaky

12https://beamng.tech/
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ID Risk Factor Version Chunk Test ID Executions
0 1 2 3 4 5 6 7 8 9

156 1.0 2 21 9 -1 0 0 0 0 0 0 0 0 0
344 1.0 3 22 4 1 1 1 1 1 1 -1 -1 1 1
345 1.0 3 22 5 1 1 1 1 1 1 -1 1 1 1
346 1.0 3 22 10 1 1 1 1 1 1 -1 1 1 -1
347 1.0 3 22 3 1 1 1 1 1 1 -1 1 1 1
348 1.0 3 22 8 1 1 1 1 1 1 -1 1 1 1
349 1.0 3 22 7 0 0 0 0 0 0 -1 0 0 0
351 1.0 3 22 2 0 0 0 0 0 0 -1 0 0 0
352 1.0 3 22 6 1 1 1 1 1 1 -1 1 1 1
353 1.0 3 22 9 1 1 1 1 1 1 -1 1 1 1

2401 2.0 3 24 5 1 1 1 1 -1 1 1 1 1 1
2402 2.0 3 24 10 1 1 1 1 -1 1 1 1 1 1
2403 2.0 3 24 2 0 0 0 0 -1 0 0 0 0 0
2404 2.0 3 24 3 0 0 0 0 -1 0 0 0 0 0
2405 2.0 3 24 8 0 0 0 0 -1 0 0 0 0 0
2406 2.0 3 24 11 1 1 1 1 -1 1 1 1 1 1
2407 2.0 3 24 1 1 1 1 1 -1 1 1 1 1 1
2408 2.0 3 24 7 -1 1 1 1 -1 1 1 1 1 1
2409 2.0 3 24 6 1 1 1 1 -1 1 1 1 1 1
2410 2.0 3 24 9 1 1 1 1 -1 1 1 1 1 1
2411 2.0 3 24 4 1 1 1 1 -1 1 1 1 1 1
2604 2.0 3 62 8 -1 -1 1 1 1 -1 1 1 1 1
2605 2.0 3 62 7 -1 -1 1 1 1 -1 1 1 1 1
2606 2.0 3 62 9 -1 -1 0 0 0 -1 0 0 0 0
2607 2.0 3 62 1 -1 -1 1 1 1 -1 1 1 1 1
2608 2.0 3 62 10 -1 -1 1 1 1 -1 1 1 1 1
2609 2.0 3 62 5 -1 -1 1 1 1 -1 1 1 1 1
2610 2.0 3 62 3 -1 -1 1 1 1 -1 1 1 1 1
2611 2.0 3 62 2 -1 -1 1 1 1 -1 1 1 1 1
2612 2.0 3 62 4 -1 -1 0 0 0 -1 0 0 0 0
2613 2.0 3 62 11 -1 -1 0 0 0 -1 0 0 0 0
2614 2.0 3 62 6 -1 -1 1 1 1 -1 1 1 1 1
2697 2.0 3 10 1 1 0 0 1 1 1 1 1 1 1
3515 1.5 1 53 6 -1 0 0 0 0 0 0 0 0 0
3655 1.5 1 16 7 0 1 1 1 1 1 0 1 1 0
4346 1.5 3 20 8 -1 1 1 1 1 -1 1 1 1 1
4347 1.5 3 20 6 -1 0 0 0 0 -1 0 0 0 0
4348 1.5 3 20 2 -1 0 0 0 0 0 0 0 0 0
4349 1.5 3 20 7 -1 1 1 1 1 -1 1 1 1 1
4350 1.5 3 20 4 -1 1 1 1 1 -1 1 1 1 1
4352 1.5 3 20 9 -1 1 1 1 1 -1 1 1 1 1
4353 1.5 3 20 5 -1 1 1 1 1 -1 1 1 1 1
4354 1.5 3 20 3 -1 0 0 0 0 0 0 0 0 0
4580 1.5 3 59 11 -1 -1 0 0 -1 -1 -1 -1 -1 -1
4581 1.5 3 59 2 -1 -1 1 1 -1 -1 -1 -1 -1 -1
4582 1.5 3 59 9 -1 -1 1 1 -1 -1 -1 -1 -1 -1
4583 1.5 3 59 4 -1 -1 1 1 -1 -1 -1 -1 -1 -1
4584 1.5 3 59 5 -1 -1 0 0 -1 -1 -1 -1 -1 -1
4585 1.5 3 59 8 -1 -1 1 1 -1 -1 -1 -1 -1 -1
4586 1.5 3 59 7 -1 -1 1 1 -1 -1 -1 -1 -1 -1
4587 1.5 3 59 6 -1 -1 1 1 -1 -1 -1 -1 -1 -1
4588 1.5 3 59 3 -1 -1 0 0 -1 -1 -1 -1 -1 -1
4589 1.5 3 59 1 -1 -1 0 0 -1 -1 -1 -1 -1 -1
4590 1.5 3 59 10 -1 -1 1 1 -1 -1 -1 -1 -1 -1

Table 10: Strong (blue) and weak flaky test cases after the post-analysis. For each test case the test execution could result in a pass, fail, or error. These
outcomes are marked as 1, 0, and -1 respectively.

All the results of the post-analysis are reported in a single CSV file. The CSV file will then give an overview
of the flaky tests.

5.2 Study Results

The results as shown in Table 10 shows that two test cases were strongly flaky (marked with blue color) whereas
the majority are weakly flaky. The results of the flaky tests are assessed by a dataset consisting of 4′756 test
cases with 10 test executions each. As shown in Table 10, two test cases are strongly flaky and 52 are weakly
flaky. Compared to the whole dataset their proportions are 0.04% and 1.1% respectively. However, out test
cases had very simple scenarios, without other cars and human obstacles. We expect such number to increase.
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6 Conclusion and Future Work

As elaborated in Section 3, to realize the COSMOS component for quality assessment and monitoring of CPS,
COSMOS focuses on the following main high- and low-level challenges:

• To allow a DevOps pipeline to monitor a set of CPS relevant Quality Attributes (QAs):

1. Monitoring CPS States

2. Monitoring Change Propagation

3. Monitoring of security vulnerabilities of CPS

4. Monitoring of Antipatterns

• To mitigate CPS degradation forms:

1. Detection of flakiness issues in X-in-the-loop testing

2. Prediction of CPS degradation patterns

3. Design of recovery solutions based on (micro-)fixes.

• Monitoring of KPIs related to key business and development goals

From a technological perspective, in the context of monitoring CPS States and flaky tests, COSMOS focuses
on addressing the realization of solutions enabling the monitoring or identification of (i) of CPS states with X-
in-the-loop Facilities, (ii) of Flaky Scenarios / tests for CPS with X-in-the-loop Facilities. Moreover, COSMOS
focuses on addressing the realization of mitigation strategies focusing on: (i) the prediction and monitoring of
Flaky Scenarios / Tests of CPS, to mitigate the risks of encountering unexpected behaviors while improving
the general quality of CPS tests; (ii) support fixing of Flaky Scenarios / tests of CPS. Finally,

From a technological perspective, in the context of monitoring and propagation of CPS changes and vulner-
abilities, COSMOS focuses on addressing the realization of solutions enabling the (i) CPS Change Analysis
and Propagation (in Open-source use cases and COSMOS use cases); (ii) the CPS vulnerability analysis and
propagation (in Open-source use cases and COSMOS use cases), with specific focus on identifying static vul-
nerabilities to use for vulnerability proneness analysis (and potentially the vulnerability propagation) in CPSs.

In previous sections we elaborated on the status of the current development. In the following sections we
elaborate on the next steps of the COSMOS development activities concerning the realization of the COSMOS
component for quality assessment and monitoring of CPS, with specific focus on activities that are expected to
be addressed in next months of the COSMOS project.

6.1 Monitoring and Propagation of CPS Changes

In the previous, related deliverable D.6.1, we described the first steps in the development of a change anal-
ysis based framework that enables the automated evaluation of changes occurring in CPSs. Specifically, we
reported the results of two studies conducted to derive (i) a broad CPS Bugs Taxonomy that can be applied
to different domains; (ii) a focused characterization of safety issues of Unmanned Aerial Vehicles (UAVs),
which is a specific CPS application domain; (iii) a fine-grained, qualitative categorization of hazard condi-
tions and incidents in UAVs. Complementary, we introduced a preliminary taxonomy of changes occurring to
open-source CPS projects. Finally, we discussed the ongoing implementation of two prototypes concerning
the automated change analysis for detecting couplings and issue categorization/prioritization of CPSs, along
with their architecture and/or preliminary data evaluation of selected open source CPS projects.

In the following sections, we elaborate on the next steps concerning the COSMOS activities focused on en-
abling the monitoring and propagation of CPS changes.
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6.1.1 Extension of Change Analysis Framework

As part of future work, we will focus on type of changes that typically impact the behavior of CPS over
certain functionalities or that impact other non-functional aspects. This activity is important to allow future
COSMOS development concerning the identification of static co-evolutionary change patterns in CPS software
and its assets (especially at the operational level) to determine the relations between (static) behavioral changes
and CPS failures (i.e., the relation between a CPS failure and change patterns). Finally, we plan to extend the
prototypes supporting the automated change analysis and issue categorization/prioritization of CPSs (discussed
in the deliverable D.6.1), so that after a given change, both prototypes are used together for classifying CPS
change types (possibly safety-related change types) using different types of information (e.g., starting from the
GitHub issue fixed in the change, commit message, the source code, etc.).

More generically, the next period will be focused on slowly support and integrate change analysis strategies in
the context of COSMOS use case partners. In the next section, we elaborate the current (high-level) plan of
adaptation of the change analysis framework in the context of INT, a COSMOS partner in the satellite-specific
CPS domain.

6.1.2 Monitoring and Propagation of Changes in the Context of Satellites on-board software

We elaborate on the next steps concerning the COSMOS activities focused on enabling the monitoring and
propagation of changes in the context of INT, a COSMOS partner in the satellite-specific CPS domain. Hence,
we discuss the context, needs, and envisioned automation in this context.

Satellites Context. Despite the technological advances in the satellite on board software development, veri-
fication and validation, the main overall design and implementation phases are still linked to manual coding
and integration of software modules. In most cases these modules are libraries or previous implementations of
specific on-board routines that have been proved against a real usage in previous missions.

Currently the Space market is living an interesting period because the Agencies (ESA at European level, and
national space agencies) are pushing the industrial ecosystem to invest into the development of smaller and
less expensive satellites platforms to operate services and functionalities that where previously operated only
by major commercial and scientific missions. The interest to push the industrial market to invest in new
constellations and new value-added services, also at benefit of the agencies and the EU countries, is moving
into the EU space market newcomers, with less proven technology and less budget available in respect of the
major missions looking for a valuable balance between reliability, speed in satellite delivery, and cost reduction
of production. But a satellite (small or big) shall be always be considered as a complex system where several
heterogeneous components have to efficiently inter-operate for delivering a certain mission goal. Moreover, on
contrary of a single big satellite, constellations have to consider an even more complex scenario in planning
and validating maneuvers where dozens of satellites have to coordinate each other to reach a certain mission
objective that potentially can affect any other orbiting devices (space awareness). A wrong strategy can make
the spacecraft not operational or create damage to any other space asset creating space garbage (named space
debris) that may cause even more damages and debris by impacting other assets. Monitoring any issue in the
controlling software before the CPS is on field for operations is fundamental in order to mitigate any possible
major damage.

INT Identified Challenges. INT has analyzed internal mission software to provide valuable scenarios for
validating the CPS change monitoring and propagation. Most of the software developed for the agency or
other satellites OEM have been marked as restricted access and so no publicly available to the rest of the
consortium partners. Despite these formal limitations, on some of the project ongoing has been identified some
core component where it is very important to conduct traceability of changes against classified and reported
bugs and malfunctions. For these assets it has been introduced in the working team a formal methodology to
classify the various software modules under development against potential macro-features of the satellites (e.g.
algorithm control, robustness scenarios, self-healing and Fault Detection Insulation and Recovery - FDIR -
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scenarios, power management, payload data management, communication, standard misuse, external interfaces
misuse).

INT and ZHAW Objectives within COSMOS. These data will flow into the main COSMOS goal of study-
ing the effectiveness of the new CPS monitoring and propagation control of changes at single source of line
code impacting potentially the overall safety and reliability of the overall spacecraft behavior. The COSMOS
modules developed by INT and ZHAW are going to be integrated into a CI pipeline in order to detect and pro-
vide insight to the software development and VV team about the potential impact of a change that potentially
introduces bugs in the system.

To make it possible to share data and information between the researchers partner and other industrial partners,
it has been identified a not restricted software module that could be used for preparing a first analysis that later
should be applied to the core components.

INT Identified Scenarios. One of the most recent projects INT is developing regards the development of on-
board critical software for the Mass Memory Unit (MMU) of the Space Rider project commissioned by ESA.
Space Rider is an automated robotic laboratory to be developed by Thales Alenia Space, a joint venture between
Thales (67%) and Leonardo (33%), prime contractor for the ESA mission, and AVIO, which is planned to
launch on Vega-C in 2023. Space Rider aims to provide Europe with an affordable, independent, reusable end-
to-end integrated space transportation system for routine access and return from low orbit. It will transport
payloads for an array of applications, orbit altitudes and inclinations. The Space Rider MMU module will be
used for the storage of scientific data coming from the various instruments operating on the spacecraft. The
laboratory will be reusable for at least 6 flights, and it is designed to stay 60 days in Earth’s orbit, and then
return on Earth with all the experiments data and results to be analysed by ESA scientists. The laboratory will
be then prepared for a new flight.

In developing the MMU, INT proposed to ESA the reuse of a well-known open-source software library for cov-
ering some of the low-level aspects in interfacing the NAND flash memories that compose the MMU hardware.
This software module is represented by YAFFS (https://yaffs.net/) an opensource filesystem implementation
for NAND flash memories. YAFFS has been used recently also from NASA for one of the exploration missions
in solar system.

Despite the initial optimism in reusing the software library, the agency asked INT to perform a complete
qualification of the software that is not respecting the common ESA coding and engineering standards. For
achieve this challenging goal, INT has to integrate the external library with the overall software ecosystem
under development and implement any kind of software verification and validation (accordingly to ECSS ESA
standards) that can prove the library grants safe usage of spacecraft computational resources to respect all
functional and non-functional requirements regarding the new file system implementation.

The software change scenarios that INT is interested to detect are: incorrect algorithm implementation, in-
correct numerical computation, mission condition checks, misuse of external interface, memory usage, invalid
documentation (discrepancy of software documentation and software implementation), incorrect configura-
tions. We will prioritize the monitoring of such aspects in the next months of the COSMOS project.

6.2 Monitoring and Propagation of CPS Vulnerabilities

From a technological perspective, in the context of monitoring and propagation of CPS vulnerabilities,
COSMOS focuses on addressing the realization of solutions enabling the CPS vulnerability analysis and prop-
agation. This solutions will be applied to both Open-source use cases and COSMOS specific use cases with a
specific focus on identifying static vulnerabilities to use for vulnerability-proneness analysis (and potentially
vulnerability propagation) in CPSs. This research will be conducted in collaboration between ZHAW and UoL.

The automation we envision aims at assessing the vulnerability-proneness levels of applications defined as "the
number of different types of known security issues exhibited by the app". The questions we target to answer
are:
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Figure 22: Examples of Types of Vulnerabilities Targeted by the Automated Monitoring of CPSs

• RQ1: Which are the different vulnerabilities exhibited by applications belonging to different application
domains? Examples of vulnerabilities targeted in COSMOS are visualized in Figure 22.

• RQ2: Is it possible to predict the level of vulnerability-proneness of an app by using the app’s contextual
information? Here we plan to experiment with deep-learning and machine learning approach to enable
the prediction of vulnerability-proneness levels (i.e., the attack surface of the systems).

For the moment, as use cases we are experimenting with a large-scale study on 5’931 firmware archives of
mobile applications, with vulnerabilities identified with Androguard and QARK. Complementary, we are
collecting CPS-specific datasets from COSMOS partners and open source CPS communities (e.g., the ROS
ecosystem) to investigate the usage of our automation in such context. Specifically, regarding the COSMOS
scenarios, the proposed approach and technology will be tested against a relevant industrial use-case emerging
from Q-Media regarding the railway sector. For safety-relevant systems developed for the Railway segment
all known vulnerabilities must be identified by the manufacturer before releasing the it to service. Their im-
pacts on the system are assessed by risk analysis. If any risk is marked as greater than acceptable, mitigation
measures must be applied to the identified vulnerabilities. As an example, if a penetration testing procedure
identifies the presence of a non-compliant version of an OpenSSH server deployed in a certain field system,
the severity level assigned to such an issue is typically Medium which is unacceptable for the area of use. Any
possible mitigation or corrective action shall be considered and promptly implemented. But it also shall be
possible to assess that such action will not impact any other modules and components. In the example a simple
server upgrade to a higher version shall request a new assessment of any possible security impact on any other
deployed software libraries or external tools integration. Overall, the prediction of vulnerability-proneness
levels is of major benefit for Q-Media scenarios in handling product patch management.
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